Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth

Authors

  • Suellen Cristina Q. Arruda Universidade Federal do Pará - UFPA, Faculdade de Ciências Exatas e Tecnologia
  • Giovany M. Figueiredo Universidade de Brasília - UNB, Departamento de Matemática
  • Rubia G. Nascimento Universidade Federal do Pará - UFPA, Instituto de Ciências Exatas e Naturais

Keywords:

Galerkin method, exponential growth, Trudinger-Moser inequality, Hardy-Sobolev inequality

Abstract

In this paper we use Galerkin method to investigate the existence of positive solution for a class of singular and quasilinear elliptic problems given by {div(a0(|u|p0)|u|p02u)=λ0uβ0+f0(u), u>0in Ω,u=0on Ω, and its version for systems given by {div(a1(|u|p1) |u|p12 u)=λ1uβ1+f1(v)in Ω,div(a2(|v|p2) |v|p22 v)=λ2vβ2+f2(u)in Ω,u,v>0in Ω,u=v=0on Ω, where ΩRN is bounded smooth domain with N3 and for i=0,1,2 we have 2pi<N, 0<βi1, λi>0 and fi are continuous functions. The hypotheses on the C1-functions ai:R+R+ allow to consider a large class of quasilinear operators.

 

Section
Articles

Published

2021-06-21

How to Cite

Arruda, S. C. Q., Figueiredo, G. M., & Nascimento, R. G. (2021). Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth. Annales Fennici Mathematici, 46(1), 395–420. Retrieved from https://afm.journal.fi/article/view/109593