New examples of Moser–Bernstein type problems for some nonlinear elliptic partial differential equations arising in geometry

Authors

  • Alfonso Romero Universidad de Granada, Departamento de Geometría y Topología
  • Rafael M. Rubio Universidad de Córdoba, Campus de Rabanales, Departamento de Matemáticas
  • Juan J. Salamanca Universidad de Oviedo, Escuela Politécnica de Ingeniería, Departamento de Estadística e I.O.

Keywords:

Nonlinear PDE of divergence form, uniqueness of entire solutions, parabolic Riemannian manifold

Abstract

 

A family of nonlinear partial differential equations of divergence form is considered. Each one is the Euler-Lagrange equation of a natural Riemaniann variational problem of geometric interest. New uniqueness results for the entire solutions of these equations on a parabolic Riemaniann manifold of arbitrary dimension are given. In particular, several Moser-Bernstein type theorems are proved.
Section
Articles

Published

2021-08-03

How to Cite

Romero, A., Rubio, R. M., & Salamanca, J. J. (2021). New examples of Moser–Bernstein type problems for some nonlinear elliptic partial differential equations arising in geometry. Annales Fennici Mathematici, 46(2), 781–794. Retrieved from https://afm.journal.fi/article/view/110589