Complex flows, escape to infinity and a question of Rubel

Authors

  • James K. Langley University of Nottingham, School of Mathematical Sciences

Keywords:

Holomorphic flows, antiholomorphic flows, trajectories

Abstract

Let f be a transcendental entire function. It was shown in a previous paper (2017) that the holomorphic flow z˙=f(z) always has infinitely many trajectories tending to infinity in finite time. It will be proved here that such trajectories are in a certain sense rare, although an example will be given to show that there can be uncountably many. In contrast, for the classical antiholomorphic flow z˙=f¯(z), such trajectories need not exist at all, although they must if f belongs to the Eremenko-Lyubich class B. It is also shown that for transcendental entire f in B there exists a path tending to infinity on which f and all its derivatives tend to infinity, thus affirming a conjecture of Rubel for this class.
Section
Articles

Published

2022-06-19

How to Cite

Langley, J. K. (2022). Complex flows, escape to infinity and a question of Rubel. Annales Fennici Mathematici, 47(2), 885–894. https://doi.org/10.54330/afm.120214