Classification of metric measure spaces and their ends using p-harmonic functions

Authors

  • Anders Björn Linköping University, Department of Mathematics
  • Jana Björn Linköping University, Department of Mathematics
  • Nageswari Shanmugalingam University of Cincinnati, Department of Mathematical Sciences

Keywords:

Classification of metric measure spaces, doubling measure, end at infinity, finite p-energy, p-hyperbolic sequence, Liouville theorem, p-harmonic function, Poincaré inequality, p-parabolic, quasiharmonic function, quasiminimizer

Abstract

By seeing whether a Liouville type theorem holds for positive, bounded, and/or finite p-energy p-harmonic and p-quasiharmonic functions, we classify proper metric spaces equipped with a locally doubling measure supporting a local p-Poincaré inequality. Similar classifications have earlier been obtained for Riemann surfaces and Riemannian manifolds. We study the inclusions between these classes of metric measure spaces, and their relationship to the p-hyperbolicity of the metric space and its ends. In particular, we characterize spaces that carry nonconstant p-harmonic functions with finite p-energy as spaces having at least two well-separated p-hyperbolic sequences of sets towards infinity. We also show that every such space X has a function fLp(X)+R with finite p-energy.
Section
Articles

Published

2022-07-16

How to Cite

Björn, A., Björn, J., & Shanmugalingam, N. (2022). Classification of metric measure spaces and their ends using p-harmonic functions. Annales Fennici Mathematici, 47(2), 1025–1052. https://doi.org/10.54330/afm.120618