Littlewood–Paley inequalities for fractional derivative on Bergman spaces

Authors

  • José Ángel Peláez Universidad de Málaga, Departamento de Análisis Matemático
  • Elena de la Rosa Universidad de Málaga, Departamento de Análisis Matemático

Keywords:

Bergman space, fractional derivative, radial weight, Littlewood-Paley formula

Abstract

For any pair (n,p), nN and 0<p<, it has been recently proved by Peláez and Rättyä (2021) that a radial weight ω on the unit disc of the complex plane D satisfies the Littlewood-Paley equivalence

D|f(z)|pω(z)dA(z)D|f(n)(z)|p(1|z|)npω(z)dA(z)+j=0n1|f(j)(0)|p,

for any analytic function f in D, if and only if ωD=D^Dˇ. A radial weight ω belongs to the class D^ if sup0r<1r1ω(s)ds1+r21ω(s)ds<, and ωDˇ if there exists k>1 such that inf0r<1r1ω(s)ds11rk1ω(s)ds>1.   In this paper we extend this result to the setting of fractional derivatives. Being precise, for an analytic function f(z)=n=0f^(n)zn we consider the fractional derivative Dμ(f)(z)=n=0f^(n)μ2n+1zn induced by a radial weight μD where μ2n+1=01r2n+1μ(r)dr. Then, we prove that for any p(0,), the Littlewood-Paley equivalence

D|f(z)|pω(z)dA(z)D|Dμ(f)(z)|p[|z|1μ(s)ds]pω(z)dA(z)


holds for any analytic function f in D if and only if ωD. We also prove that for any p(0,), the inequality


D|Dμ(f)(z)|p[|z|1μ(s)ds]pω(z)dA(z)D|f(z)|pω(z)dA(z)

holds for any analytic function f in D if and only if ωD^.

 

Section
Articles

Published

2022-09-17

How to Cite

Peláez, J. Ángel, & de la Rosa, E. (2022). Littlewood–Paley inequalities for fractional derivative on Bergman spaces. Annales Fennici Mathematici, 47(2), 1109–1130. https://doi.org/10.54330/afm.121831