Dimension estimates on circular (s,t)-Furstenberg sets
DOI:
https://doi.org/10.54330/afm.128073Keywords:
Furstenberg set, circular Furstenberg set, Hausdorff dimensionAbstract
In this paper, we show that circular \((s,t)\)-Furstenberg sets in \(\mathbb R^2\) have Hausdorff dimension at least \(\max\{\tfrac{t}3+s,(2t+1)s-t\}\) for all \(0<s,t\le 1\). This result extends the previous dimension estimates on circular Kakeya sets by Wolff.Downloads
Published
2023-03-27
Issue
Section
Articles
License
Copyright (c) 2022 Annales Fennici Mathematici

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Liu, J. (2023). Dimension estimates on circular (s,t)-Furstenberg sets. Annales Fennici Mathematici, 48(1), 299-324. https://doi.org/10.54330/afm.128073