A clustering theorem in fractional Sobolev spaces

Authors

  • Fatma Gamze Düzgün Università degli Studi di Cagliari, Dipartimento di Matematica e Informatica
  • Antonio Iannizzotto Università degli Studi di Cagliari, Dipartimento di Matematica e Informatica
  • Vincenzo Vespri Università degli Studi di Firenze, Dipartimento di Matematica e Informatica "U. Dini"

Keywords:

Clustering, fractional Sobolev spaces, regularity

Abstract

We prove a general clustering result for the fractional Sobolev space \(W^{s,p}\): whenever the positivity set of a function \(u\) in a cube has measure bounded from below by a multiple of the cube's volume, and the \(W^{s,p}\)-seminorm of \(u\) is bounded from above by a convenient power of the cube's side, then \(u\) is positive in a universally reduced cube. Our result aims at applications in regularity theory for fractional elliptic and parabolic equations. Also, by means of suitable interpolation inequalities, we show that clustering results in \(W^{1,p}\) and \(BV\), respectively, can be deduced as special cases.
Section
Articles

Published

2025-04-29

How to Cite

Düzgün, F. G., Iannizzotto, A., & Vespri, V. (2025). A clustering theorem in fractional Sobolev spaces. Annales Fennici Mathematici, 50(1), 243–252. https://doi.org/10.54330/afm.161328