Exceptional set estimates in finite fields

Authors

  • Paige Bright Massachusetts Institute of Technology, Department of Mathematics
  • Shengwen Gan University of Wisconsin-Madison, Department of Mathematics

DOI:

https://doi.org/10.54330/afm.163667

Keywords:

Projection theory, exceptional set estimate

Abstract

We study the exceptional set estimate for projections in \(\mathbb{F}_q^n\). For each \(V\in G(k,\mathbb{F}^n_q)\), let

\(\pi_V\colon \mathbb{F}_q^n\rightarrow V\)
be the projection map. We prove the following result: If \(A\subset \mathbb{F}_q^n\) with \(\#A=q^a\) (\(n-1\le a\le n\)) and \(0< s<\frac{a+n-2}{2}\), then

\(\# \{V\in G(n-1,\mathbb{F}^n_q)\colon \#\pi_V(A)< q^s \}\lessapprox q^{n-2}\).

This improves the previous range \(0<s<\frac{n-1}{n}a\). Also, our range of \(s\) is sharp in the sense that if \(s>\frac{a+n-2}{2}\), then the right hand side above should be at least \(q^t\) for some \(t>n-2\).

 

Downloads

Published

2025-08-12

Issue

Section

Articles

How to Cite

Bright, P., & Gan, S. (2025). Exceptional set estimates in finite fields. Annales Fennici Mathematici, 50(2), 467–481. https://doi.org/10.54330/afm.163667