Exceptional set estimates in finite fields
DOI:
https://doi.org/10.54330/afm.163667Keywords:
Projection theory, exceptional set estimateAbstract
We study the exceptional set estimate for projections in \(\mathbb{F}_q^n\). For each \(V\in G(k,\mathbb{F}^n_q)\), let\(\pi_V\colon \mathbb{F}_q^n\rightarrow V\)
be the projection map. We prove the following result: If \(A\subset \mathbb{F}_q^n\) with \(\#A=q^a\) (\(n-1\le a\le n\)) and \(0< s<\frac{a+n-2}{2}\), then
\(\# \{V\in G(n-1,\mathbb{F}^n_q)\colon \#\pi_V(A)< q^s \}\lessapprox q^{n-2}\).
This improves the previous range \(0<s<\frac{n-1}{n}a\). Also, our range of \(s\) is sharp in the sense that if \(s>\frac{a+n-2}{2}\), then the right hand side above should be at least \(q^t\) for some \(t>n-2\).
Downloads
Published
2025-08-12
Issue
Section
Articles
License
Copyright (c) 2025 Annales Fennici Mathematici

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Bright, P., & Gan, S. (2025). Exceptional set estimates in finite fields. Annales Fennici Mathematici, 50(2), 467–481. https://doi.org/10.54330/afm.163667