Matrix-weighted bounds in variable Lebesgue spaces
DOI:
https://doi.org/10.54330/afm.164106Avainsanat:
Singular integrals, Calderón–Zygmund operators, variable Lebesgue spaces, exponent functions, maximal operators, matrix weights, convex body dominationAbstrakti
In this paper we prove boundedness of Calderón–Zygmund operators and the Christ–Goldberg maximal operator in the matrix-weighted variable Lebesgue spaces recently introduced by Cruz-Uribe and the second author. Our main tool to prove these bounds is through bounding a Goldberg auxiliary maximal operator. As an application, we obtain a quantitative extrapolation theorem for matrix-weighted variable Lebesgue spaces from the recent framework of directional Banach function spaces of the first author.Tiedostolataukset
Julkaistu
2025-09-01
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2025 Annales Fennici Mathematici

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
Nieraeth, Z., & Penrod, M. (2025). Matrix-weighted bounds in variable Lebesgue spaces. Annales Fennici Mathematici, 50(2), 519–548. https://doi.org/10.54330/afm.164106