On \(L^p \to L^q\) infinitesimal relative boundedness of Schrödinger operators \((-\Delta)^{\alpha/2}+v\)
DOI:
https://doi.org/10.54330/afm.177378Keywords:
Bessel potentials, dyadic cubes, infinitesimal relative bounds, Morrey spaces, Schrödinger operators, trace inequality, Wolff's potentialAbstract
By analyzing the trace inequality for Bessel potentials, some Morrey-type sufficient conditions are given for which \(L^p \to L^q\), \(1<p,q<\infty\), infinitesimal relative boundedness of the Schrödinger operators \((-\Delta)^{\alpha/2}+v\) holds. These results provide new aspects of Morrey spaces and a nice application of weight theory.Downloads
Published
2025-11-17
Issue
Section
Articles
License
Copyright (c) 2025 Annales Fennici Mathematici

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Hatano, N., Kawasumi, R., Saito, H., & Tanaka, H. (2025). On \(L^p \to L^q\) infinitesimal relative boundedness of Schrödinger operators \((-\Delta)^{\alpha/2}+v\). Annales Fennici Mathematici, 50(2), 741–759. https://doi.org/10.54330/afm.177378