A quantitative version of the Hopf–Oleinik lemma for a quasilinear non-uniformly elliptic operator

Authors

  • Diego Moreira Universidade Federal do Ceará, Departamento de Matemática
  • Jefferson Abrantes Santos Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática
  • Sergio H. Monari Soares Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação

Keywords:

Hopf–Oleinik lemma, quasilinear non-uniformly elliptic operators

Abstract

This paper establishes a quantitative version of the Hopf–Oleinik lemma (HOL) for a quasilinear non-uniformly elliptic operator of the form \(\mathcal{L}_\infty u: =2\Delta_\infty u+\Delta u\). One key point in the proof is the passage from non-uniformly elliptic operators to locally uniformly ones via a new, uniform, and, rescaled version of the gradient estimate obtained by Evans and Smart for solutions to a family of non-uniformly quasilinear elliptic operators.

 

Section
Articles

Published

2024-05-31

How to Cite

Moreira, D., Santos, J. A., & Soares, S. H. M. (2024). A quantitative version of the Hopf–Oleinik lemma for a quasilinear non-uniformly elliptic operator. Annales Fennici Mathematici, 49(1), 337–348. https://doi.org/10.54330/afm.146035