Pointwise inequalities for Sobolev functions on generalized cuspidal domains

Kirjoittajat

  • Zheng Zhu University of Jyväskylä, Department of Mathematics and Statistics

Avainsanat:

Sobolev functions, cuspidal domains, pointwise inequality

Abstrakti

Let \(\Omega\subset\mathbb{R}^{n-1}\) be a bounded star-shaped domain and \(\Omega_\psi\) be an outward cuspidal domain with base domain \(\Omega\). We prove that for \(1<p\leq\infty\), \(W^{1, p}(\Omega_\psi)=M^{1,p}(\Omega_\psi)\) if and only if \(W^{1, p}(\Omega)=M^{1, p}(\Omega)\).

 

Osasto
Articles

Julkaistu

2022-05-10

Viittaaminen

Zhu, Z. (2022). Pointwise inequalities for Sobolev functions on generalized cuspidal domains. Annales Fennici Mathematici, 47(2), 747–757. https://doi.org/10.54330/afm.117881