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COMPLEMENTS TO HAVINOS THEOREM
ON L'-APPROXIMATION BY ANALYTIC FUNCTIONS

BENT FUGLEDE

Introduction. For a Borel set EcC denoteby Ll(n) the linear subset of Lz(E)
(with respect to 2-dimensional Lebesgue measure ,t) consisting of those f<L'(E\
which can be extended to an analytic function in some open set contdining .8. It
was shown by Havin [0] that fcL'(E) belongs to the Z2-closure cl t-i@\ of fi@'1
if and only if

IF* d)' : o

for every Beppo Levi function E on C, (made "precise" in the sense of Deny and

Lions [4]) for which

E :0 quasi everywhere in C\d
that is, everywherö in Cr\^E' except in some set which locally is of zero outer loga-

rithmic capacity. (We write 0:010x-i|l0y.)
As a further necessary and sufficient condition for f(Lz(E) to belong to

cl L\(E),we find in Section 2thattherc shall exist a function uwhichisfinely harmonic,

in the sense of [6], quasi everywhere in the interior E' of EintheCartmfine topology,

and such that
f : 0u almost everywhere in E',

in the sense of differentiability in the fine topology. In the affirmative case, u may be

taken to be the restriction to E' of a Beppo Levi function U (precise, as above) on C,

and such that |U:F a.e. in C, where Fdenotes any prescribed extension of f to

a function in Lt(A. At the same time we show that the property of belongihg to
cl LI(E) has a local character in the fine topology

The key to our proof of Havin's theorem and these complements to it is the anal-

ogous result on Beppo Levi functions obtained in [8] (valid also in higher dimensions).

In Section 3 it is shown that the property of unique continuation of analytic

functions gets lost when we pass from Ll(E) to its Z2-closure. In particular, the func-

tions in cl L'z,(E) (for suitable E\ are not all finely holomorphic q.e. in E'in the sense

of [7]. To prove this we employ'an example due to Lyons [11], showing that finely

harmonic functions do not in general have the property of unique continuation.

Finally, in Section 4, we extend the preceding results to the case of a Borel set E
in R&, ft:l,2,.... The functionsf,E, and u above are now replaced by exterior
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differential forms (currents), the homogeneous parts of which are of even degree

in the case of f,say,and of odd degree in the case of E and u. Theoperators 0 and.D

are replaced by the restrictions of d+6 (exterior differentiation plus co-differenti-
ation) to the forms that are 'oodd" and "even", respectively, in the above sense. For
k:2 we recover the original case of Havin's theorem.

1. Spaces of Beppo Levi functions of a complex variable

For any domain (:connected open set) QcRz:C we denote by ,BZ(O) the

vector space of all complex distributions f€?'(A) whose gradient Yf is in Lz(A)
with respect to Lebesgue measure ). on C, see Deny and Lions [4], and further Schulze

and Wildenhain ll4, Kapitel IXl. Thus BL(O) is a prehilbert space \ryith the de-

generate inner product

(u,u)r: !ov"was".

The quotient space of BL(O) modulo the constants is a separable Hilbert space, de-

noted by BL'(O).
The elements of ,BZ(O) are (equivalence classes modulo ,1 of) locally ,t-inte-

grable functions, called Beppo Leui functions. Each such equivalence class contains,
however, a unique, much smaller class - an equivalence class modulo the polart)
sets, and consisting of quasi-continuousz) functions on O (called "fonctions prdcisdes"

in t4D. Recall that a function is quasi-continuous if and only if it isfinely continuous

(i.e., continuous with respect to the rtne tupologyt) on C) off some polar (hence

finely closed and finely discrete) set, cf. [4, p. 356].

We denote by BLD(A) the vector space of all (equivalence classes modulo polar
sets of) Beppo Levi-Deny'functions, that is, quasi-continuous Beppo Levi functions
on O. Considered as prehilbert spaces, BL@) and BLD(A) are the same.

The vector space 9(Q) of all infinitely differentiable functions of compact sup-
port in O is a subspace of BL(A) and of BLD(O). The Dirichlet seminorm

llzlfi : (u, u)lt': llVallrror

is anorm on 9(Q). Following [4J we denote by !rt(O)the completion of 9(A) in
this norm. The Hilbert space A,(Q) may thus be identified naturally with the closure

t) A polar set (in C) is a set which locally is of outer logarithmic capacity 0.

') A function p: I *C ({2 cC) is called, quasi continuous if tZ is the union of bounded open s€ts

o; for which there exists, for every 8=0, an open s€t ar"car of logarithmic capacity <e such that
the restriction of / to a\o. is continuous.

8) The fine topology on C is the weakest topology forwhich all subharmonic functions (on open
subsets of C) are continuous. The fine topology is strictly stronger than the usual Euclidean topology
on C.
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,Bi(O) of 9'(O) n BL'(A), whereby 9'(O) denotes the image of 9@\ under the

canonical mapping BL(O)*Bt 197.
- For the particular case Q:C we have the following well-known

Le m m a 1 .1.' a) 0 is the only element of L'(q represented by a function hqmonic

in all of C.
b) The constants are the only elements of BL(C) represented by a function har-

monic in all of C.
c) 9'(C\ is norm dense in the Hilbert space BL'(C)' In other words, BL;(C):

BL',(c).

Proof. a) lf f is harmonic on C then l/12 is subharmonic on C, hence <0

because, for any a€.C, r>0,

tf@)1, = # I v-,,-, lfl' il = +tfil',"<c>,

which tends to 0 as r*-.
b) Reduces to a) applied to the partial derivatives.

c) An element u'€BL'(C) is orthogonalto 9'(Ö if and only if a'is represented

by a harmonic element of BL(Q, i.e., a constant, by b). (Cf. [4, p. 318J.) 11

A domain gcC is a Green domain (i.e., it has a Green function) if and only if
CO is non-polar (Myrberg's theorem). When O is a Green domain, the natural in-
jection I (A) -9'191 extends uniquely to a continuous, linear, and injective mapping

aL(Q)-z',(Q), 14, p. 3501. In this case at(Q) will be identified with its image,

which clearly is a vector subspace of BL(Q), or let us rather say of BLD(A\, since we

shall understand that the elements of At(O) are (equivalence classes modulo polar

sets of) quasi-continuous functions.
Recall that a function u(BLD(A) (O a Green domain in C) belongs b AL(A)

if and only if
(1) fit*lj- u(x):0 q.e.n) for !€flrin"Q,

where åssn" O denotes the boundary of O in the fine topology on C. See [4, p. 359].

If a function u on C satisfies u:0 q.e. in 
^A 

(O a Green domain), then

(2) u€BLD(C) + ula€At(a).

Here + follows from the above because a is finely continuous q.e. in C. For e see

[4, pp. 355-359], [4, p. 308].

Definition. A set EcC is called qtasi-analytic [quasi-coanalfiicl if E drf-

fers only by a polar set from some analytic lcoanalytici set.

t) Quasi euerywhere (q.e.) means: everywhere off some polar set, while almost euerywhere (a,e.)

means: everyrvhere off some l-nullset.
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Every finely closed set ,E is quasi-analytic, and even quasi Borel. In fact, by
Kellogg's theorem, E differs only by a polar set from its base å(^E') which is an ordi-
nary G5-set contained in E.t) Every quasi-(co)analytic set is Lebesgue measurable.

The interior of a set EcC for the fine topology is denoted by E'.

Lemma 1.2. For any set EcC and any uQBLD(C) we haue

u:0 q.e. in C\E+ Yu:O a.e. in C\E'.
Proof. Since zis finely continuous q.e., the hypothesis z:0 q.e. in CEimplies

u:0 q.e. in CE'. The conclusion Vz:0 a.e. in C.E'is obvious if CE'is polar
(hence a Lebesgue null set). lf CE' is non-polar it contains a compact non-polar set

K. (This is because C,E'is finely closed, hence quasi-analytic and therefore "capaci-
table", cf. e.g. [2, Corollary 5.3.3].) Any component O of CKis a Green domain, and
06n"Qc0QcK. It follows that u1o(At(O) by (l), because u:O q.e.in K(cCE').
According to [8, corollaire, p. l42l it follows that Vz:0 a.e. tn O\E', and hence
a.e. in C(.Ku E'\. We conclude that Yu:0 a.e. in CE'because we may replace Kby
KaD,,n:1,2,..., where O,:{z€Cllz-al=lln), a€C beingchosen so that each
KnD, is non-polar. a

For any Green domain OcC and arry u€BLD(O) we have the canonical orthog-
onal decomposition 14, p. 3221

(3)

and (rlh)'- Q.

u - u+h, u(gL(O), h harmonic in d),

Lemma 1.3. Euery Beppo Leuifunction u on an open set QcC such that u is
finely harmonic q.e. in Q, can be corrected (uniquely) on a polar set so as to become har-
monic (hencefinely harmonic) in the whole of Q.

Proof. We may suppose that Q is a Green domain (othewise cover C by a se-

quence of Green domains, e.g. discs). In the decomposition (3) the function u:
u-h€AL(A) is finely harmonic q.e. in o, and hence u and therefore u are harmonic
(after correction on a polar set) according to [8, proposition 6]. D - As to finely
harmonic functions see [6].

2. Havin's theorem and complenents to it

The following key result is the 2-dimensional case of that part of [8, thdoröme
1ll which deals with finely harmonic functions:

Theorem A. Let QcC be a Green domain and EcQ a quasi-coanalytic
(e.g. Borel) set. For u(At(A\ the following are equiualent:6)

6) Tllr,base b(E) of aset E isthesetof pointsof C atwhich E isnotthin (in the sense of
Brelot), in other words, the finely derived set.

8) For any set ,Ec tr we have 1)+2)<+3), cf. [8, remarque I, p. 1431.
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l) There exists a sequence (dcaL(o) conuerging to u in at(a) such that each

un is harmonic in some open set o4)E.
2\ (u,E\1:0 foreuery EcO'@) suchthat E:0 q.e. ttx o\E (hmce YE:o

a.e. in O\E,).t)
3\ u is finely harmonic in the fine interior E' of E.

In order to pass from this result to an extended version of Havin's theorem we

need some preparations. Writing as usual z:x*i! and (with a normalization

convenient for our purpose)

0 : 0l0x-i0l0Y, 0 : 0l0x*i0l0Y,

the Laplacian /:02l0x2I02f0yz becomes

I : AD:00.
Hence

(4) 02-'- 00loglzl:.floglzl:2ne

(e:the Dirac measure at 0). For any u,u<At(Q) (O a Green domain in C) we have

(5) (u, a)r : ! oa"U at, : t o0u0ö 
d),.

For u(g(Q) this follows easily from 80:/. It extends by continuity to the general

case.

Lemma 2.1. The operatot 0 maps BL'(q isometrically onto Lz(Q.

Proof. å is isometric on O'(C), cf. the proof of (5), hence on BL'(A in view of
Lemma 1.1c). If f€Lr(q is orthogonal to the range of å then 6f:o in the distri-

bution sense, hence 887:a7:9, and so f:0 by Lemma l'la)' f]

For a Beppo Levi function w in an open set OcC it is well known that the

partial derivatives 0wl0x,0wl0y entetng in the definition of åw and 6w arc the same

in the distribution sense as in the classical sense, in which they exist a.e. and are of
class Z2(O), cf. [4, p. 315J. If w(BLD(A) then w is representable locally (q.e.) as

the Riesz potential l"l-t * E (of order l) of a function g€Ll(q, and hence rry is

hkewise finely dffirentiable at almost every point zo of Q. Moreover, the usual dif-
ferential at (a.e.) zo€Q:

dw : (x - *r) X eo) * 0 - to) ff {rr\,
is also the fine differential at ze because

lw (z) -w (ro) - dwlllt - tol -- Q

t) Cf. [8, corollaire, p. 1421.
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&s Z+Zo in the fine topology, or equivalently as z-zo in the usual topology, thoug;h
with z restricted to a suitable (punctured) fine neighbourhood of zo; cf. Mizuta [121.

Every finely harmonic function u (real or complex valued) in a finely open set
UcC is likewise finely differentiable a.e. in U. This is because every point zo€ U
has a fine neighbourhood VcU such that uy extends to a BLD function on Co cf.
[8, th6oröme 2].8) See also Davie and CIksendal [3, Theorem 6].

We are now prepared to state and prove Havin's theorem in an extended form.

Theorem 2. Let E be a quasi-coanalytic subset of C. For any f(Lz(E) the

following are equhsalent:

l) There exists a sequence (f")cLz(E) con:erging to f in norm in Lz(E) such
that eachf, admits an extension to afunction Fn analytic in an open set ta.o=E.

4 IEfTAdl:O for eoery E(BLD(Q such that E:Q q.e. in C\E (hence
\E:O a.e. in C\E/.

3) There exists a complex ualuedfunction u defined andfinely harmonic q.e. in E'
such that ffy:f a.e. in E' in the sense of dffirentiation in the fine topology.

R e m a r k 2. I . These three properties are of a local character in the fine topology ;
that is, each property is equivalent to the finely localized version ofit, obtained by
replacing E by EaV (and.f bl fpn) for every Z belonging to some family {
of finely open sets covering d or just E'. In pafiicular, it suffices to verify 2) for all
q€BLD(C) such that E equals 0 off some compact subset of ,E'. (Recall that every
fine neighbourhood of a point z(C contains a fine neighbourhood of z which is
compact in the usual topology.)

Remark 2.2. Suppose that f(Lz(E) has the equivalent properties l),2\, 3),
and let/also denote any extension of/of class Z2(C). We may then arrange, in l),
that the analytic functions Fnin ao are square integrable and that ll4-fi,^ll*6^1-0
as z+6. And in 3) the function u(BLD(Q - uniquely determined q.e. in C (op
to an additive constant) by \u:f a.e. in C (cf. Lemma2.l) - is finely harmonic
q.e. in E'.

Proof of Theorem 2 and Remarks 2.1, 2.2.We shall denote by l'), 2'\,3)the
localized versions of l),2),3) described in Remark 2.l.lt is trivial that l)+1,),
2)+2'),3.+3'), and so it remains to prove that l)+2')+3)+3)+2)=+l).

Ad. l')=.2'). For every V ftom some coverin g { of E' as in the formulation of
1') in Remark 2.1, and for any z(E'nZ, choose W finely open and of compact
closure W sothat z(WcWcE'nV. For any E€BLD(C) such that g:0 q.e. in
CW, the support of g as a distribution is compact and contained in WcEav.

8) In the first instance we

extends to a function of class
function by 0 in C.f) is of class

obtain a bounded fine neighbourhood VcU of zs such that uy
b'$Z), (2 being a disc containing V. The further extension of this
BLD(C) according to (2), Section 1.
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With 4 anallrtic in a,=EnV, and F,1"nr*f n LZ(E\V), we therefore obtain,

noting that ilE:Q a.e. in CW by Lemma l'2,

I * r,ar al : I.^F,oE il" : - f o^4r,, d). : o.

It follows that t rffi d7:0, and this establishes 2') because the above finely open

sets W have the union E'.
Ad 2')+3'). According to Lemma 2.1 thete exists u€BLD(Q with 0u:7

after extension of/ by.0, say, in CE For every Z from some coverin g { of E' as in

the formulation of 2') in Remark2.l, and for any z(E'nZ, choose W as above,

and O as a bounded domain in C containingW (e.g., u disc). Consider the canonical

decomposition u1e:o*h,cf.(3).Thus u(At(o), and 6Ah:Äh:o in o. Nowlet

A$LD(C) satisfy e:0 q.e. i" \Z in particular q.e.in CO. Then Eq(O'(O)
according to (2), Section l. Moreover, I o\nfi al': I aT\h.cp dL:O. Using (5),

and noting that E:Q q.e. in C(EaV\ in particular, we therefore obtain from2')

(u, Elo)': ! o}ua,o 
al : t oAua,o 

ilL : I cf AE d). : 0

because \E:O a.e. in CW(3 Co), cf. Lemma 1.2. Applying Theorem A to u,

we find that u is finely harmonic q.e. inW, and so is therefote u:u*h because å is

harmonic and hence finely harmonic in O, cf. [6, Theorem 8.7]. - The above finely

open sets I4 have the union E', and 3') ensues.

Ad 3')=+3), with 3) amplified as in the latter part of Remark 2.2. Thus let

f€L'(q extend the givenf, and let u€BLD(C) satisfy flv:f a-e. Then ais finely

continuous in C offsome polar set e. By 3'), E'is the union of a family of finely open

sets Z for each of which there exists a finely harmonic function u, in V off some polar

set er,such that 0u, :f a.e. in V. Each point of Z\(e u en) has a fine neighbourhood

It in V\(e u en) such that uu eq.6alsin }{z some function of class BLD(Q, as observed

just before Theorem 2. The same is therefore true of u-uv. Because 0(u-ur):
f-f:o a.e. in \euen), we infer from [7, Section 3] that T=i" is finely harmon-

ic (even finely holomorphiQ in z\(eu er), andhence u is itself finely harmonic in

Z\euen). Invoking Doob's quasi Lindelöf principle [5], cf. also [2, exercise 7.2.6]

and the sheaf property of fine harmonicity [6, p. 70], we conclude that u is indeed

finely harmonic q.e. in E'.
Ad 3)+2). Since even 3') implies the amplified version of 3), we may suppose

that u€BLD(C) is finely harmonic q.e. in E', and that \u:f after extendinC f bi
0 in CE. If C.E'is polar, it follows from 3) by Lemma 1.3 and Lemma l.lb) that a

is constant (q.e.), hence f:\u:O (a.e.), which implies 2). - Suppose next that CE'
is non-polar, and let E<BLD(Q satisfy q:0 q.e. 11 CE, hence E:g q.e. in

CE' , by fine continuity. Proceeding as in the proof of Lemma I '2 we choose a com-

pact, non-polar set Kc.CE'. Every component O of CK is a Green domain, and

E,€AL(Q\ In the decomposition (3) of \s, the function u:\a-h€01(o) is
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finely harmonic q.e. in .E' (like u), and hence it follows from Theorem A, in view

of (5), that ! o\ofi d).:(u,eto)r:0. Since h(BL(O) is harmonic in O, we have

lo\nfidl":0, as shown by approximating ap(Ar(O) by functions of class

9(Q). Consequently, [o\ufial,:O. Adding over all components O of CK, and
noting that \E:Q a.e. in CE'(=KvCE), by Lemma 1.2, we conclude that

I"f ural': Io,a"a,tal: f "*oufial-: 
o.

Ad 2)=+ 1), with 1) amplified as in Remark 2.2.If CE is polar, it follows from 2)

that t"ffid)":0 for every E(9(C). Hence/is analytic inC, and.therefore ;f:Q
in C, by Lemma l.la), which establishes 1). - Suppose nextthatthequasi-coanalyt-
ic set CE is non-polar. Choose a compact, non-polar set Kc CE (cf. the proof of
Lemma 1.2). Then EcCK, and it clearly suffices to prove 1) (in its amplified form)
with ,E replaced by ,En O for each component Q of CK. For any EQ.AL(Q\ such
that q:Q q.e. in O\8, the extension iD of E to C by @:0 in CO satisfies

A€BLD(Q, by (2), Section 1; and @:0 q.e.in CE, hence å@:0 a.e. in C(En O),

by Lemma 1.2. It follows from (3) that loTAOai,:0, and hence I"nof1Edl:o,
that is, lo|fial,:0. Choose ueBLD(Q so that 6s:7 cf. Lemma 2.1. In the
canonical decomposition u1s:D*h witth acA'1O1 we obtain from 2) in view of (5)

: f n fM dr- [ ranaw at: o,

because hcBL(q is harmonic in O. Applying Theorem A to E n Q in place of E,
we obtain a sequence (o,)c0t(O) converging to u in 901(fZ) such that each un is

harmonic in some open set ao, EnQcot,cQ. It follows that

un :: a,th - o*h : ula in BL'(A),

and here an is harmonic in arn. Consequently, fo::\uo€L'(O) is analytic in coo and
converges to \up:f1a in Lz(A). !

Remark 2.3. In property 3) in the above theorem, consider any two functions
ur, u, which are finely harmonic q.e. in E' and satisfy (in the sense of fine partial
derivatives) 0u1:0ur:f a.e. in E'.The difference q=[is then finely harmonic in
E'\e for some polar set ecE', and the conjugate frr$is evenfinely holomorphic

in -E'\e, cf. 1) in [7, ddfinition 3], because Tpt-r-uS:g a.e. in ,E'\. Hence
frffi is finely differentiable everywhere in .E'\, even in the complex sense, ac-

cording to [7, th6oröme l0]. This implies thaturandu, are finely differentiable (in
the real sense) at precisely the same points of E'\.

In order to be able to compare clL\@) and tf,(A)L (cf. the introduction) for
different sets -E we introduce the following

Notation. For any quasi-coanalytic set EcC we denote by Lf,(C, E) the linear
subset of Lz(C) consisting of those f€L'(q which are holomorphic in some open

(u, E)r: I n\u0E dA
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set containing E. Thus L?"(E) contains all restrictions to

L'o(c, E).
The closure cl Lz"(C, E) of LI(C, E) within L'(c) is, by Remark 2.2,

all f€Lr(C) such that the restriction f1n belongs to the closure cILl(E)
within Lr(E), in other words such that f1n has the equivalent properties

of Theorem 2. Using 2), we thus obtain

clL!(C, E): {\El E€BLD(C), Q :0 q.e. in CElrt,

where I indicates orthogonal complement within L'(C). (Here we also make use of
the fact that flE:Q a.e. in CEfor any E as stated in this formula, cf' Lemma l'2')
It follows that

LZ(C, E)L : {\El Ee BLD(C), Q :0 q.e. in CE\

E of functions of class

the set of
of LI(E)
1), 2), 3)

(6)

because the right hand member is a closed subspace of Lz(C) in view of Lemma 2.1

andtheknown factthat {q€BLD(ql E:0 q'e' in CE}'is closed n BL'(c), cf' e'g'

[4, p. 308].

As noted in the proof of 3)+2) in Theorem 2,

I :0 q.e' in CE + q : Q q'e' in CE'

when E(BLD(d) (for then E is finely continuous q.e.). Thus Lx(c, E)L and hence

clLf,(c,E) only depend on the fine interior E' of the quasi-coanalytic set ,Ecc.
Furthermore, these two orthogonal subspaces of Z2(C) obviously depend only on

the equivalence class of E modulo polar sets, in view of (6). More precisely we have

Lemma 2.2. Let E and F be quasi-coanalytic subsets of C. Then cl Lf,(C, E):
clLl(c, F) hotds if and only if the fine interiors E' and F' dffir only by a polar set;

or equiaalently: if and only if CE and CF are thin at the satne points: b(Cn):b(CF).

Proof. The following stronger result will be obtained:

F'\E'Polar <+ L|(C, nL c Lf;(C, E)t-

The implication=+follows from (6) above. In proving the converse implication it
sufrces to consider the case where .E' and F are finely open. Suppose that F\E is

non-polar, and choose an open disc o in c so that /4::(F\E) n o is likewise non-

polar. Then there exist two disjoint finely open subsets V and W of F such that A nV
and Anw are both non-polar. choose a finite strict Green potential P:Gp on Q

so that !Gpdp=.1*, and Put

u: p-f;i'\u
(balayage relative to O), cf. [2, Section 1.2].Then u€At(Q), and so the extension g

of z to C obtained by putting 9:0 in Co belongs to BLD(C), by (2)' Section 1'

Clearly, q:0 q.e. in CV,in particular q.e. in CF, thatis, \E€Lf,(C, F)r, by (6).

on the other hand, åE is not in Lf,(c, E)a, for that would imply that E were constant
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q.e. in CE()A) according to (6) combined with Lemma 2.1; and this is not the
case. Indeed , u>0 in the non-polar set A n Y because p is strict [2, Proposition
1.2.2l,whrle u:E:0 q.e. in the non-polar set AnW (cQntZcO\Z). n

Corollary (essentially due to Havin [0]). Let E be aquasi-coanalytic subset of
C, and let F be crn open set such that Fc.E (for example F:8, the usual interior of
E). In order that all functions f<L'(E) such that f is analytic in F belong to cl Lf,(n),
it is necessary and sufficient that E'\F be polar.

In particular, cl Lf,(n}:Lz(E) if and only if E':0 (or equiualently: E' should
be a Lebesgue null set).

Proof. Since FcE is open, we have FcEc.E', and LI(C, ,F) is the set of
functions in Lz(C) which are analytic in ,F. This set is closed in 9'(Q and hence in
L'(q.Since cl Lf,(C,n):clLX(C,E'), the corollary follows from Lemma 2.2 in
view of (6).

3. Relation to finely holomorphic functions

For every finely open set UcC we denote by 0(U) the algebra of finely holo-
morphic functions U*C,cf. [7]. Every f€O(U) has fine derivatives in the complex
sense of all orders, and if U is a fine domain (:finely connected finely open set)
the/is uniquely determined within 0(a) by the values of f and all its derivatives at
any prescribed point [7, thdorömes 10 et 14]. In particular, if f(z):A for all z in some
fine neighbourhood of a point of a fine domain (J,then f(z):O for all z(U. Letus
further write

02(C,A): {f<Lz(C)l/ is finely holomorphic in U}.

Returning to the quasi-coanalytic set EcC we have (in addition to the role of fine
holomorphy described in Remark 2.3) the following inclusion relations:

LZ(C, E) c 0'(C, E') c cl L|(C, E),

showing that Lzo(C, E) and 02(C, E') have the same closure n Lz(Q. The former
relation (7) follows from the definition of Lz"(C, -E) together with the fact that evcry
analytic function in an open set rrrcC is finely holomorphic in crr, and hence also in
every finely open subset of co (such as -E' when a 

= 
E), cf . l7 , p. 631. The latter inclu-

sion (7) follows from [7, proposition 16](applied to U:E') in view of Theorem 2 and
the fact that clLf,(C,n):slLl(C,E'), as noted in Section 2 (before Lemma2.2).

Each of the inclusion relations in (7) is proper for a suitable set d even for a

saitable finely open set ,8. As to the former inclusion this follows from the example

17, p.741, taking E:U'. The latter inclusion is proper, as observed in [7, remarque
3, p. 8l], or alternatively as a consequence of the following

(7)
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Proposition 3. There exists d bounded fine domain EcC and a function
f(clL2,(C,,8)\0'z(C,,8). We may further arrctnge that f does not haue the unique

continuation property. Explicitly, we shall achieue that f:g a.e. in some fine neigh-

bourhood of a point of E, and yet f is not identically O a.e. in E.

Proof. Let D denote the open unit disc in C, and D(2, r\ the open disc of radius
r centered at z(C. Following Lyons [11], in which is incorporated an idea due to
M. Sakai, we apply Vitali's covering theorem to cover D up to a Lebesgue nullset
by disjoint discs D,:2(zn,rn)cD, n€N, and consider the probability measure

P : Zocw rle,,'

where e, denotes the Dirac measure at z.The logarithmic potential of p is defined in
C as the negative of

u(z) : Z,ey r?log lz- zol (= - -), z(C.

For lzl=1, loglz-(l is a harmonic function of ((D, and hence

It follows that

(8)

toglz- znl : # I r^Los lz-Cl d1(0, lzl> 1.

u(z) : 
+ 2,r* f ,^Los lz-(l dl(o

: * I ,bglz - (l d1(0 : toslzl, lzl > t-

The functions z and z*log lzl are subharmonic on C. The set

s: {z(Clu(z):--}u{0}
is therefore polar, and clearly {zn\,r*cecD. It follows that C\ is a fine do-
main [6, Theorem 12.21, and that u and z*loglzl are finely harmonic in C\,
see [6, Theorem 8.10]. The function u defined on C\ by

o(z): u(z)-loglzl

is thus finely harmonic. We have u=0 in C\D, by (8), but not in all of C\,
for then the equality u(z):1st lzl would extend by fine continuity from C\e to
C, noting that e has no finely interior points; but actually log(2,\>--:u(in)
for every n such that zol0. Because C\e is a fine domain, we conclude that the

fine interior of {z€C\elu(z):g; has a fine boundary point z* relative to C\.
Since o is finely harmonic in C\e, there exists a finely open set E with z*€,EcC\e
such that u coincides on -E with a function w(BLD(C), see above fiust before Theo-
rem 2). We choose E as a fine domain, thus invoking the local connectedness of the

fine topology, cf. [6, p. 92}The function

(9) .f : 0w

belongs to clLf,(C,E) according to Theorem 2, 3)+l).
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It remains to show that f1B:(0u)1, (cf. Lemma 1.2) does not have the unique
continuation property. By the choice of z* we have ull in d but u:0 everywhere
in some non-empty finely open set VcE, hence f:ff11:0 a.e. n V. If f:O a.e.

in .E then D is finely holomorphic in ,E according to 1) in [7, ddfinition 3], and we are
led to a contradiction by the unique continuation property of finely holomorphic
functions [7, thdoröme 1a]. n - It can be shown thato necessarily, lz*l:1.

4. An extension to higher dimensions

We replace C by Rt(k€N) as space for the independent variable, now denoted
by x:(xr, ..., xk). For any vector space F of real distributions on Rk, or of (equiv-
alence classes of) real functions on a given subset of Rk, we denote by F.o the vector
space of currents, or differential forms,

(10) f :ZX=r2,,-...=r,fr,,...,iodxi' n".n dxio

with coefrcients from F, cf. [3]. We have the direct sum decomposition

4* : fr.rrn* 9o66,

where F.",o, respectively Fouu, denotes the set of those forms fCF.,, that are even,
respectively odd, in the sense that p is even, respectively odd, for every non-zero
coeffcient fr,,...,,. in the reduced expression (10) of f. The number of
coefficients in (10) ihat are not a priori equal to 0 is 2ft-1for an even form/and like-
wise for an odd form.

lf Fis a (real) Hilbert spacewith an inner product (.1.) then so is .4.*,, its
inner product - likewise denoted (.1.) - being given by

(fld - ZX=t Zrr=...-in (.f,', ...,ip1g,r,...,,o).

F,r.o and Fouu are then orthogonal to each other.
If the elements of F are difrerentiable (in some sense) we consider the differen-

tial operator d+ö on F"*r, where d denotes exterior differentiation and ä denotes
co-differentiation.e) Then d+ö carries even forms into odd forms, and vice versa.
We further write

0: d+ö, acting on 9*u,

6 : d+ö, acting on F.".n.
Note that (when defined)

(r2) 04, AA c @+ö)' - dö+öd - /,
the Laplacian (acting coem.cientwise). This shows that d+ä is elliptic.

0) The operator d+ d has been considered in an entirely different context by Gilkey [9]. Our d
and ./ correspond to -d and -./ in [13].

(1 1)
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We proceed to extend the main results of the preceding sections to the present

situation, which is more general - being, for k:2, nothing but a reformulation of
the complex situation considered up till now, cf. below. Note, however, that instead

of analytic functions F in open sets wcC now just speak of even differential forms

F satisfying the generalized Cauchy-Riemann equation -0F(:(d+ö\F):0 in

open sets cocRk. By ellipticity, such forms (currents) have real analytic coefficients

in co.

Actually, the proofs become simpler in the case k>3 because R& then has a

Green kernel, namely the Newtonian kernel. From Lemma l.lc) (valid in any dimen-

sion) we obtain the identification

BLD(R\:ö'(Ro), k>3'
Lemma 2.1 extends, showing that å maps lAt(n\l'uu isometrically onto

[Zt(A&)]."." (k=3). In particular,

(u, ts)t : @ul}u), u, u€1ät1Rk11"uu,

where (.,.) and (.1.) denote the inner products on [O1(R5]",t ild [Z'(Xil)]".,
derived, as in (11), from the corresponding inner products on A'(n\ and Zz(R&),

respectively.
If we replace A'@) in [8] (in the case d|:Rk, k>3) by l6'(Ro)l"uu, then the

part of [8, thdoröme I l] which deals with (finely) harmonic functions carries over with

Unchanged proof. Using this result in place of Theorem A above, Theorem 2 caries

over as follows:

Theorem 4. Let E be a quasi-coanalytic subset o.f N, k€N. For any differen'

tial form f€lLz(E)|.,. the following are equiualent:

1\ There exists a sequence (f,)clL'z(E)1,",n conuerging to f in norm inlL'(E)|"""^
such that each fo admits an extension to an ezen, real analytic differential form F,

for which 6Fo:g in some open set an) E-

2) (fl\d:O for euery form E<IBLD(Rk)l,uu such that Q:0 (t.e.\ in

CE (hence 0E:0 a.e. in CE).
3) There exists an oddform u, with cofficients defined andfinely harmonic q.e.Lo\

in E', such thqt ilu:f a.e. in E' (in the sense of fine dffirentiation).

The various remarks to Theorem 2 (with the exception of Remark 2.3 if k>3)
carry over mutatis mutandis, and so do Lemma 2.2 and its corollary. As to Section 3,

the construction in the proof of Proposition 3 carries over to produce an example of
a fine domain EcRk, k>2, and a form f€lLz(E)L""o having the equivalent proper-

ties l), 2), 3) in Theorem 4, but failing to have the property of unique continuation.

10) When /r>3, quasi-everywhere (q.e.) means: everywhere except in some polat set (-a set

of zero out€r Newton capacity).
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In all of this, one may interchange throughout the terms "even" and "odd".
In odd dimension ft the two versions thus obtained are, however, equivalent via the
involution *, cf. [13, p.l2l]. For even k=4 the two versions do not appear to be
equivalent in any natural sense.

For k:2, both versions reduce to the complex situation from Sections l-3
via the following identifications (writing (x, y) for the generic point of R2):

f dx-f g dy, f+ g dx n dy -f-tig,
considered as a function of z:x*iy. Then å and D, as defined in the present section,

correspond to å and D from Section 2.

For k:3 we make the following identifications (writing (x, y, z) for the coordi-
nates of the generic point of Rs):

ft it x n d y n d z * f1 d x tfz d y * f" d z * (fo, fr,.f ,, Ji),

fo +f, a y n d z a f, d z n dx * fs dx n d y - (.fo, fr,.fr, fr).
Then å and D both correspond to the operator

where fl,:fl1fly, etc. The operator D is studied, e.g., in Arianyhlll.- If we further
identify Ra (as range space) with the quaternion field Il as follows:

(ao, ar, a2, as)+ aslali*a2jlark,

then the operator D transforms into

Df : (0,ni + (0 rfl j + (0 
"f) 

k

for functions / from RB to If.
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