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COMPLEMENTS TO HAVIN’S THEOREM
ON L:-APPROXIMATION BY ANALYTIC FUNCTIONS

BENT FUGLEDE

Introduction. For a Borel set ECC denote by L2(E) the linear subset of L2(E)
(with respect to 2-dimensional Lebesgue measure 1) consisting of those fcL*(E)
which can be extended to an analytic function in some open set containing E. It
was shown by Havin [10] that f€L2(E) belongs to the L2-closure cl L2(E) of L2(E)
if and only if

[ropdr=0

for every Beppo Levi function ¢ on C, (made “precise” in the sense of Deny and
Lions [4]) for which

¢ = 0 quasi everywhere in C\ E,

that is, everywhere in C\ E except in some set which locally is of zero outer loga-
rithmic capacity. (We write 8=09/0x—id/dy.)

As a further necessary and sufficient condition for f€L2(E) to belong to
cl L2(E), we find in Section 2 that there shall exist a function  which is finely harmonic,
in the sense of [6], quasi everywhere in the interior E” of E in the Cartan fine topology,
and such that

f = 0u almost everywhere in E’,

in the sense of differentiability in the fine topology. In the affirmative case, u may be
taken to be the restriction to E’ of a Beppo Levi function U (precise, as above) on C,
and such that QU=F a.e. in C, where F denotes any prescribed extension of f to
a function in L2(C). At the same time we show that the property of belonging to
cl L*(E) has a local character in the fine topology. '

The key to our proof of Havin’s theorem and these complements to it is the anal-
ogous result on Beppo Levi functions obtained in [8] (valid also in higher dimensions).

In Section 3 it is shown that the property of unique continuation of analytic
functions gets lost when we pass from L2(E) to its L-closure. In particular, the func-
tions in cl L2(E) (for suitable E) are not all finely holomorphic g.e. in E” in the sense
of [7]. To prove this we employ an example due to Lyons [11], showing that finely
harmonic functions do not in general have the property of unique continuation.

Finally, in Section 4, we extend the preceding results to the case of a Borel set E
in R*, k=1,2,.... The functions f, ¢, and u above are now replaced by exterior
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differential forms (currents), the homogeneous parts of which are of even degree
in the case of f, say, and of odd degree in the case of ¢ and u. The operators 9 and 9
are replaced by the restrictions of d+46 (exterior differentiation plus co-differenti-
ation) to the forms that are “odd” and ‘“‘even”, respectively, in the above sense. For
k=2 we recover the original case of Havin’s theorem.

1. Spaces of Beppo Levi functions of a complex variable

For any domain (=connected open set) QC R*=C we denote by BL(Q) the
vector space of all complex distributions f€2’(Q) whose gradient Vf is in L?*(Q)
with respect to Lebesgue measure A on C, see Deny and Lions [4], and further Schulze
and Wildenhain [14, Kapitel IX]. Thus BL(Q) is a prehilbert space with the de-
generate inner product

(u, v); = fQ VuVvdai.

The quotient space of BL(Q2) modulo the constants is a separable Hilbert space, de-
noted by BL'(Q).

The elements of BL(Q) are (equivalence classes modulo 1 of) locally A-inte-
grable functions, called Beppo Levi functions. Each such equivalence class contains,
however, a unique, much smaller class — an equivalence class modulo the polar?)
sets, and consisting of quasi-continuous®) functions on Q (called “‘fonctions précisées”
in [4]). Recall that a function is quasi-continuous if and only if it is finely continuous
(i.e., continuous with respect to the fine topology®) on C) off some polar (hence
finely closed and finely discrete) set, cf. [4, p. 356].

We denote by BLD(Q) the vector space of all (equivalence classes modulo polar
sets of ) Beppo Levi— Deny functions, that is, quasi-continuous Beppo Levi functions
on Q. Considered as prehilbert spaces, BL(L) and BLD(Q) are the same.

The vector space 2(Q) of all infinitely differentiable functions of compact sup-
port in Q is a subspace of BL(Q) and of BLD(Q). The Dirichlet seminorm

lully = (u, Wi = | Vul L@y

is a norm on 2(Q). Following [4] we denote by 9'(Q) the completion of 2(Q) in
this norm. The Hilbert space 9'(Q) may thus be identified naturally with the closure

1) A polar set (in C) is a set which locally is of outer logarithmic capacity 0.

?) Afunction ¢: Q-C (Q2cC)is called quasi continuous if 2 is the union of bounded open sets
o for which there exists, for every ¢>0, an open set w,Cw of logarithmic capacity <e such that
the restriction of f to w\w, is continuous.

3) The fine topology on C is the weakest topology for which all subharmonic functions (on open
subsets of C) are continuous. The fine topology is strictly stronger than the usual Euclidean topology
on C.
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B;(Q) of 2°(Q) in BL'(Q), whereby 2°(Q) denotes the image of 2(£2) under the
canonical mapping BL(Q)—BL (Q).
For the particular case Q=C we have the following well-known

Lemma 1.1. a) 0 is the only element of L*(C) represented by a function harmonic
in all of C.

b) The constants are the only elements of BL(C) represented by a function har-
monic in all of C.

¢) 2°(C) is norm dense in the Hilbert space BL'(C). In other words, BLy(C)=
BL*(C).

Proof. a) If f is harmonic on C then |f|? is subharmonic on C, hence =0
because, for any a€C, r=0,

1 ey ]
f12di = —

2
I flz2cy

lf(@)f =

nr2 J |z—a|<r

which tends to 0 as r—co.

b) Reduces to a) applied to the partial derivatives.

¢) Anelement u'€ BL'(C) is orthogonal to 2°(C) if and only if " is represented
by a harmonic element of BL(C), i.e., a constant, by b). (Cf. [4, p. 318].) O

A domain QcC is a Green domain (i.e., it has a Green function) if and only if
CQ is non-polar (Myrberg’s theorem). When Q is a Green domain, the natural in-
jection 2(Q)—~2’(RQ) extends uniquely to a continuous, linear, and injective mapping
PU(Q)~D'(Q), [4, p. 350]. In this case P*(Q) will be identified with its image,
which clearly is a vector subspace of BL(Q), or let us rather say of BLD(2), since we
shall understand that the elements of #(Q) are (equivalence classes modulo polar
sets of) quasi-continuous functions.

Recall that a function u€ BLD(Q) (2 a Green domain in C) belongs to ()
if and only if
(€)) ﬁnxe_»l;m u(x) =0 q.e?) for y€orinR,

where 0x;,. 2 denotes the boundary of Q in the fine topology on C. See [4, p. 359].
If a function u on C satisfies u=0 g.e. in C\ 2 (2 a Green domain), then

) u€ BLD(C) < ulo€ 7*(Q).

Here = follows from the above because u is finely continuous q.e. in C. For <« see
[4, pp. 355—359], [14, p. 308].

Definition. 4 set ECC is called quasi-analytic [quasi-coanalytic] if E dif-
fers only by a polar set from some analytic [coanalytic] set.

%) Quasi everywhere (q.e.) means: everywhere off some polar set, while almost everywhere (a.e.)
means: everywhere off some A-nullset.
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Every finely closed set E is quasi-analytic, and even quasi Borel. In fact, by
Kellogg’s theorem, E differs only by a polar set from its base b(E) which is an ordi-
nary G,-set contained in E.%) Every quasi-(co)analytic set is Lebesgue measurable.

The interior of a set ECC for the fine topology is denoted by E’.

Lemma 1.2. For any set ECC and any u€ BLD(C) we have

u=0 ge in C\E=>Vu=0 a.e. in C\E'.

Proof. Since u is finely continuous g.e., the hypothesis #=0 q.e. in CE implies
u=0 gq.e. in CE’. The conclusion Vu=0 a.e. in CE’ is obvious if CE’ is polar
(hence a Lebesgue null set). If CE’ is non-polar it contains a compact non-polar set
K. (This is because CE’ is finely closed, hence quasi-analytic and therefore ““capaci-
table”, cf. e.g. [2, Corollary 5.3.3].) Any component 2 of CK is a Green domain, and
Ofine 2C0QC K. Tt follows that umeg?l(Q) by (1), because u=0 q.e. in K(cCE’).
According to [8, corollaire, p. 142] it follows that Vu=0 a.e. in Q\E’, and hence
a.e. in C(KUE’). We conclude that Vu=0 a.e. in CE’ because we may replace K by
KnD,, n=1,2, ..., where D,,={z€C| |z—a|=1/n}, acC being chosen so that each
KnD, is non-polar. [

For any Green domain QcC and any u€ BLD(R) we have the canonical orthog-
onal decomposition [4, p. 322]

3) u=v+h, 1;6921(9), h harmonic in Q,
and (v|h),=0.

Lemma 1.3. Every Beppo Levi function u on an open set QCC such that u is
finely harmonic g.e. in Q, can be corrected (uniquely) on a polar set so as to become har-
monic (hence finely harmonic) in the whole of Q.

Proof. We may suppose that Q is a Green domain (othewise cover C by a se-
quence of Green domains, e.g. discs). In the decomposition (3) the function v=
u—heH*(Q) is finely harmonic q.e. in @, and hence v and therefore u are harmonic
(after correction on a polar set) according to [8, proposition 6]. [0 — As to finely
harmonic functions see [6].

2. Havin’s theorem and complements to it

The following key result is the 2-dimensional case of that part of [8, théoréme
11] which deals with finely harmonic functions:

Theorem A. Let QcC be a Green domain and ECQ a quasi-coanalytic
(e.g. Borel) set. For uc9'(Q) the following are equivalent:®)

5) The base b(E) of a set E is the set of points of C at which E is not thin (in the sense of
Brelot), in other words, the finely derived set.
%) For any set EC Q we have 1)=2)«3), cf. [8, remarque 1, p. 143].
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1) There exists a sequence (u,)C9*(Q) converging to u in 91 (Q) such that each
u, is harmonic in some open set w,DE.

2) (u, ), =0 for every €D (Q) such that ¢=0 g.e.in Q\E (hence Vo=0
ae. in Q\E).")

3) u is finely harmonic in the fine interior E’ of E.

In order to pass from this result to an extended version of Havin’s theorem we
need some preparations. Writing as usual z=x+iy and (with a normalization
convenient for our purpose)

d = 0/ox—i0/dy, 0 = d|ox+id]dy,
the Laplacian 4=0%/0x*40%/dy* becomes

A =30 = 9.
Hence
4) 9z-1 = 9dlog |z| = Alog |z| = 2me

(e=the Dirac measure at 0). For any u, v€ 91(Q) (2 a Green domain in C) we have
(5) ma:h%%a:h%%#
For v€2(Q) this follows easily from 00=4. It extends by continuity to the general

case.

Lemma 2.1. The operator & maps BL'(C) isometrically onto L*(C).

Proof. 9 is isometric on Q°(C), cf. the proof of (5), hence on BL*(C) in view of
Lemma 1.1¢). If f€L*(C) is orthogonal to the range of d then 9f=0 in the distri-
bution sense, hence 99f=4f=0, and so f=0 by Lemma 1.1a). O

For a Beppo Levi function w in an open set QCC it is well known that the
partial derivatives dw/0x, dw/dy entering in the definition of ow and Ow are the same
in the distribution sense as in the classical sense, in which they exist a.e. and are of
class L2(Q), cf. [4, p. 315]. If we BLD(Q) then w is representable locally (q.e.) as
the Riesz potential |z|~1xg (of order 1) of a function g€L%(C), and hence w is
likewise finely differentiable at almost every point z, of Q. Moreover, the usual dif-
ferential at (a.e.) z,€Q:

ow ow
dw = (x—x,) x (zo)+(y— o) Dy (20)s
is also the fine differential at z, because

Iw(2)—w(zo) —dwl/|z—zo| >0

7) Cf. [8, corollaire, p. 142].
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as z—z, in the fine topology, or equivalently as z—z, in the usual topology, though
with z restricted to a suitable (punctured) fine neighbourhood of z,; cf. Mizuta [12].
Every finely harmonic function u (real or complex valued) in a finely open set
UcC is likewise finely differentiable a.e. in U. This is because every point zy€ U
has a fine neighbourhood V'CU such that u;; extends to a BLD function on C, cf.
[8, théoréme 2].%) See also Davie and @ksendal [3, Theorem 6].
We are now prepared to state and prove Havin’s theorem in an extended form.

Theorem 2. Let E be a quasi-coanalytic subset of C. For any fc¢L*(E) the
following are equivalent:

1) There exists a sequence (f,)CL2(E) converging to f in norm in L*(E) such
that each f, admits an extension to a function F, analytic in an open set w,>E.

2) fEf% dl=0 for every @€BLD(C) such that ¢=0 g.e. in C\E (hence
09=0 a.e. in C\E).

3) There exists a complex valued function u defined and finely harmonic q.e. in E’
such that Ju=f a.e. in E’ in the sense of differentiation in the fine topology.

Remark 2.1. These three properties are of a Jocal character in the fine topology;
that is, each property is equivalent to the finely localized version of it, obtained by
replacing E by EnV (and f by Jignv) for every V belonging to some family ¥
of finely open sets covering E, or just E’. In particular, it suffices to verify 2) for all
®€BLD(C) such that ¢ equals 0 off some compact subset of E’. (Recall that every
fine neighbourhood of a point z€C contains a fine neighbourhood of z which is
compact in the usual topology.)

Remark 2.2. Suppose that f€L*(E) has the equivalent properties 1), 2), 3),
and let f also denote any extension of f of class L2(C). We may then arrange, in 1),
that the analytic functions F, in w, are square integrable and that | F, —fio Il L, ,~0
as n—e<o. And in 3) the function u€ BLD(C) — uniquely determined q.e. in c (up
to an additive constant) by du=f a.e. in C (cf. Lemma 2.1) — is finely harmonic
g.e. in E’.

Proof of Theorem 2 and Remarks 2.1, 2.2. We shall denote by 1), 2°), 3’) the
localized versions of 1), 2), 3) described in Remark 2.1. It is trivial that 1)=1’),
2)=2"), 3=3), and so it remains to prove that 1)=2)=3)=3)=2)=1).

Ad 1")=-2"). For every V from some covering ¥~ of E’ as in the formulation of
1) in Remark 2.1, and for any z€E’nV¥, choose W finely open and of compact
closure W so that zeWcWCE’nV. For any ¢€BLD(C) such that ¢p=0 g.e. in
CW, the support of ¢ as a distribution is compact and contained in WcEAV.

®) In the first instance we obtain a bounded fine neighbourhood VcU of z, such that uy

extends to a function of class @1(9), 2 being a disc containing V. The further extension of this
function by 0 in € is of class BLD (C) according to (2), Section 1.
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With F, analytic in w,DEnV, and F,zqy~f in L2(EnV), we therefore obtain,
noting that dp=0 a.e. in CW by Lemma 1.2,

fWF,,B_(pdl =fw Fn%di=—fg OF,p d) = 0.

It follows that f - f0¢ di=0, and this establishes 2) because the above finely open
sets W have the union E’.

Ad 2)=3"). According to Lemma 2.1 there exists u€¢ BLD(C) with du=f
after extension of £ by 0, say, in CE. For every V from some covering ¥~ of E” as in
the formulation of 2”) in Remark 2.1, and for any z€E’nV, choose W as above,
and Q as a bounded domain in C containing W (e.g., a disc). Consider the canonical
decomposition ujo=v+h, cf. (3). Thus vePL(Q), and dh=Ah=0 in Q. Now let
@€BLD(C) satisfy ¢=0 q.e.in C\W, in particular g.e. in €Q. Then ¢ o€ 2 (Q)
according to (2), Section 1. Moreover, [,8hd¢ di=[,00h-pdi=0. Using (5),
and noting that ¢=0 q.e. in C(ENV) in particular, we therefore obtain from 2’)

@ ploy = [ wdodi = [ oudpdi= [ fogdi=0

because dp=0 a.e. in CW(>CQ), cf. Lemma 1.2. Applying Theorem A to v,
we find that v is finely harmonic g.e. in W, and so is therefore u=v+#h because £ is
harmonic and hence finely harmonic in Q, cf. [6, Theorem 8.7]. — The above finely
open sets W have the union E’, and 3’) ensues.

Ad 3)=3), with 3) amplified as in the latter part of Remark 2.2. Thus let
feL*C) extend the given f; and let u€ BLD(C) satisfy du=f a.e. Then u is finely
continuous in C off some polar set e. By 3”), E’ is the union of a family of finely open
sets V for each of which there exists a finely harmonic function uy, in ¥ off some polar
set ey, such that duy,=f a.e.in V. Each point of ¥\ (e Ue;) has a fine neighbourhood
W in V\(e W ey) such that u, equals in W some function of class BLD(C), as observed
just before Theorem 2. The same is therefore true of u—uy. Because 0(u—uy)=
f—f=0 a.e.in V\(euey), we infer from [7, Section 3] that #=1uy is finely harmon-
ic (even finely holomorphic) in ¥\ (euey), and hence u is itself finely harmonic in
V\(euey). Invoking Doob’s quasi Lindeldf principle [5], cf. also [2, exercise 7.2.6]
and the sheaf property of fine harmonicity [6, p. 70], we conclude that u is indeed
finely harmonic q.e. in E’.

Ad 3)=2). Since even 3’) implies the amplified version of 3), we may suppose
that u€ BLD(C) is finely harmonic q.e. in E’, and that du=f after extending f by
0 in CE. If CE’ is polar, it follows from 3) by Lemma 1.3 and Lemma 1.1b) that u
is constant (qg.e.), hence f=du=0 (a.e.), which implies 2). — Suppose next that CE’
is non-polar, and let @€BLD(C) satisfy ¢=0 q.e. in CE, hence ¢=0 gq.e. in
CE’, by fine continuity. Proceeding as in the proof of Lemma 1.2 we choose a com-
pact, non-polar set KcCE’. Every component 2 of CK is a Green domain, and
@1o€ P (Q). In the decomposition (3) of uq, the function v=uo—heFP(Q) is
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finely harmonic q.e. in E’ (like »), and hence it follows from Theorem A, in view
of (5), that [ 20000 di=(v, @101 =0. Since h€ BL(Q) is harmonic in Q, we have
f o Ohdpdi=0, as shown tlapproximating qomE@l(Q) by functions of class
2(RQ). Consequently, f o 0udpdi=0. Adding over all components Q of CK, and
noting that 99 =0 a.e. in CE’(>KuUCE), by Lemma 1.2, we conclude that

[, fo¢di= [ oudpdi= [_ dudgdi=0.

Ad 2)=1), with 1) amplified as in Remark 2.2. If CE is polar, it follows from 2)
that | f0p d\=0 for every p€2(C). Hence fis analytic in C, and therefore f=0
in C, by Lemma 1.1a), which establishes 1). — Suppose next that the quasi-coanalyt-
ic set CE is non-polar. Choose a compact, non-polar set K CE (cf. the proof of
Lemma 1.2). Then EcCK, and it clearly suffices to prove 1) (in its amplified form)
with E replaced by En Q for each component Q of CK. For any ¢€%'(Q) such
that ¢=0 q.e. in Q\E, the extension ® of ¢ to C by =0 in CQ satisfies
&< BLD(C), by (2), Section 1;and &=0 q.e.in CE, hence 9#=0 a.e.in C(En Q),
by Lemma 1.2. It follows from (3) that fEf{)_q)d/l:O, and hence fm,f%dz:o,
that is, fgfa_(pdllzo. Choose u€ BLD(C) so that du=f, cf. Lemma 2.1. In the
canonical decomposition u;o=v+h4 with vED(Q) we obtain from 2) in view of (5)

(0, @)= [, 0000 di= [ f00di~ [ ohdgdi =0,

because 7€ BL(Q) is harmonic in Q. Applying Theorem A to En Q in place of E,
we obtain a sequence (v,)C%P1(Q) converging to v in $(Q) such that each v, is
harmonic in some open set w,, EnQcw,cQ. It follows that

u, = v,+h -v+h=ulp, in BL(Q),

and here u, is harmonic in w,. Consequently, f,:=0u,€L*(Q) is analytic in w, and
converges to duja=fjo in L3(Q). O

Remark 2.3. In property 3) in the above theorem, consider any two functions
uy, u; which are finely harmonic q.e. in E” and satisfy (in the sense of fine partial
derivatives) du; =0u,=f a.e. in E’. The difference 7 —; is then finely harmonic in
E\ e for some polar set ecE’, and the conjugate % —u;, is even finely holomorphic
in E™\e, cf. 1) in [7, définition 3], because 0@ =1;)=0 a.e. in E\e. Hence
u;—1u, is finely differentiable everywhere in E”\ e, even in the complex sense, ac-
cording to [7, théoréme 10]. This implies that u, and u, are finely differentiable (in
the real sense) at precisely the same points of E"\e.

In order to be able to compare cl L2(E) and L%(E)* (cf. the introduction) for
different sets E we introduce the following

Notation. For any quasi-coanalytic set ECC we denote by L2(C, E) the linear
subset of L2(C) consisting of those f€L2(C) which are holomorphic in some open
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set containing E. Thus L2(E) contains all restrictions to E of functions of class
L%(C, E).

The closure cl L3(C, E) of L3(C, E) within L*(C) is, by Remark 2.2, the set of
all feL*(C) such that the restriction fi5 belongs to the closure cl LX(E) of LX(E)
within L2(E), in other words such that fi; has the equivalent properties 1), 2), 3)
of Theorem 2. Using 2), we thus obtain

d L2(C, E) = {9¢p| ¢€BLD(C), ¢ =0 q.e. in CE}L,

where | indicates orthogonal complement within L2(C). (Here we also make use of
the fact that d¢=0 a.e. in CE for any ¢ as stated in this formula, cf. Lemma 1.2.)
It follows that

(6) L2(C, E)+ = {0¢| ¢ BLD(C), ¢ =0 q.e. in CE}

because the right hand member is a closed subspace of L2(C) in view of Lemma 2.1
and the known fact that {¢p€BLD(C)| ¢=0 g.e. in CE}" is closed in BL'(C), cf. e.g.
[14, p. 308].

As noted in the proof of 3)=2) in Theorem 2,

=0 qe. in CE« ¢=0 qe. in CE’

when @€ BLD(C) (for then ¢ is finely continuous g.e.). Thus L;(C, E)* and hence
cl L3(C, E) only depend on the fine interior E” of the quasi-coanalytic set ECC.
Furthermore, these two orthogonal subspaces of L*(C) obviously depend only on
the equivalence class of E modulo polar sets, in view of (6). More precisely we have

Lemma 2.2. Let E and F be quasi-coanalytic subsets of C. Then cl LX(C, E)=
cl L3(C, F) holds if and only if the fine interiors E " and F’ differ only by a polar set;
or equivalently: if and only if CE and CF are thin at the same points: b(CE)=b(CF).

Proof. The following stronger result will be obtained:
FN\E’polar & L:(C, F): c L2(C, E)*.

The implication=follows from (6) above. In proving the converse implication it
suffices to consider the case where E and F are finely open. Suppose that F\E is
non-polar, and choose an open disc 2 in C so that 4:=(F\E)n Q is likewise non-
polar. Then there exist two disjoint finely open subsets ¥ and W of Fsuch that 40V
and AW are both non-polar. Choose a finite strict Green potential p=Gu on Q
so that [Gudu<+<-, and put

u=p—R}Y

(balayage relative to ), cf. [2, Section 7.2]. Then u¢ 9'(Q), and so the extension ¢
of u to C obtained by putting ¢=0 in CQ belongs to BLD(C), by (2), Section 1.
Clearly, =0 q.e. in CV, in particular g.e. in CF, thatis, dp€L}(C, F)*, by (6).
On the other hand, d¢ is not in L2(C, E)*, for that would imply that ¢ were constant
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g.e. in CE(>A) according to (6) combired with Lemma 2.1; and this is not the
case. Indeed, »=0 in the non-polar set ANV because p is strict [2, Proposition
7.2.2], while u=¢=0 q.e. in the non-polar set ANnW (CQAWcCQ\V). O

Corollary (essentially due to Havin [10]). Let E be a quasi-coanalytic subset of
C, and let F be an open set such that FCE ( for example F=E, the usual interior of
E). In order that all functions fcL*(E) such that f'is analytic in F belong to cl L*(E),
it is necessary and sufficient that E'\F be polar.

In particular, cl LE2(E)=L*(E) if and only if E’=0 (or equivalently: E’ should
be a Lebesgue null set).

Proof. Since FCE is open, we have FCECE’, and L%*(C, F) is the set of
functions in L2(C) which are analytic in F. This set is closed in 2’(C) and hence in
L*(C). Since cl L2(C, E)=cl L3(C, E’), the corollary follows from Lemma 2.2 in
view of (6).

3. Relation to finely holomorphic functions

For every finely open set UcC we denote by O(U) the algebra of finely holo-
morphic functions U—C, cf. [7]. Every f€0O(U) has fine derivatives in the complex
sense of all orders, and if U is a fine domain (=finely connected finely open set)
the fis uniquely determined within O(U) by the values of f and all its derivatives at
any prescribed point [7, théorémes 10 et 14]. In particular, if f(z)=0 for all z in some
fine neighbourhood of a point of a fine domain U, then f(z)=0 for all z€U. Let us
further write

O*(C, U) = {feL*(C)| f is finely holomorphic in U}.

Returning to the quasi-coanalytic set ECC we have (in addition to the role of fine
holomorphy described in Remark 2.3) the following inclusion relations:

(M Li(C, E) C 0*(C, E’) < d L(C, E),

showing that L2(C, E) and ¢*(C, E’) have the same closure in L2(C). The former
relation (7) follows from the definition of L2(C, E) together with the fact that every
analytic function in an open set wCC is finely holomorphic in w, and hence also in
every finely open subset of w (such as E” when wDE), cf.[7, p. 63]. The latter inclu-
sion (7) follows from [7, proposition 16] (applied to U=E’) in view of Theorem 2 and
the fact that cl L2(C, E)=cl L%(C, E’), as noted in Section 2 (before Lemma 2.2).

Each of the inclusion relations in (7) is proper for a suitable set E, even for a
suitable finely open set E. As to the former inclusion this follows from the example
[7, p. 74], taking E=U’. The latter inclusion is proper, as observed in [7, remarque
3, p. 81], or alternatively as a consequence of the following
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Proposition 3. There exists a bounded fine domain ECC and a function
fecl LA(C, E)\V*(C, E). We may further arrange that f does not have the unique
continuation property. Explicitly, we shall achieve that f=0 a.e. in some fine neigh-
bourhood of a point of E, and yet f is not identically 0 a.e. in E.

Proof. Let D denote the open unit disc in C, and D(z, r) the open disc of radius
r centered at z€C. Following Lyons [11], in which is incorporated an idea due to
M. Sakai, we apply Vitali’s covering theorem to cover D up to a Lebesgue nullset
by disjoint discs D,=D(z,,r,)CD, n€N, and consider the probability measure

u= Z"EN"sgz,’
where ¢, denotes the Dirac measure at z. The logarithmic potential of u is defined in
C as the negative of
u(z) = Spenrilog|z—z,| (=—<), z€C.

For |z|>1, log |z—{| is a harmonic function of (€D, and hence

1
log 2=z, = — [, log |==(1d2(0). |zl > 1.
It follows that

®) w(@) == Zuen [, log|z=L 420

1
= — [, log|z—{|di) = loglzl, |zl = 1.
The functions # and z—log |z| are subharmonic on C. The set
e = {z€Clu(z) = —=} U {0}

is therefore polar, and clearly {z,},.yCecD. It follows that C\e is a fine do-
main [6, Theorem 12.2], and that u and z—log |z| are finely harmonic in C\\e,
see [6, Theorem 8.10]. The function v defined on C\e by

v(z) = u(z)—log |z|

is thus finely harmonic. We have v=0 in C\D, by (8), but not in all of C\e,
for then the equality u(z)=log |z| would extend by fine continuity from C\e to
C, noting that e has no finely interior points; but actually log(z,)>—<=u(z,)
for every n such that z,0. Because C\e is a fine domain, we conclude that the
fine interior of {z€C\ elv(z)=0} has a fine boundary point z* relative to C\e.
Since v is finely harmonic in C\ e, there exists a finely open set E with z*€¢ ECC\e
such that v coincides on E with a function wé€ BLD(C), see above (just before Theo-
rem 2). We choose E as a fine domain, thus invoking the local connectedness of the
fine topology, cf. [6, p. 92]. The function

) f=ow
belongs to cl L2(C, E) according to Theorem 2, 3)=1).
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It remains to show that f;=(dv); (cf. Lemma 1.2) does not have the unique
continuation property. By the choice of z* we have v#0 in E, but v=0 everywhere
in some non-empty finely open set VCE, hence f=0dv=0 a.e. in V. If f=0 a.e.
in E then ¢ is finely holomorphic in E according to 1) in [7, définition 3], and we are
led to a contradiction by the unique continuation property of finely holomorphic
functions [7, théoréme 14]. O — It can be shown that, necessarily, |z*|=1.

4. An extension to higher dimensions

We replace C by R¥(k€N) as space for the independent variable, now denoted
by x=(x%, ..., x*). For any vector space & of real distributions on R*, or of (equiv-
alence classes of) real functions on a given subset of R¥, we denote by £, the vector
space of currents, or differential forms,

(10 f= 2’:=1 hmee<ty Sty iy AXL A o A dixe
with coefficients from %, cf. [13]. We have the direct sum decomposition
g;ext = 'g:even_I_g:odd’

where Z,,.,, respectively &4, denotes the set of those forms f€Z,,, that are even,
respectively odd, in the sense that p is even, respectively odd, for every non-zero
coefficient f; ., in the reduced expression (10) of f. The number of
coefficients in (10) that are not a priori equal to 0 is 2~ for an even form fand like-
wise for an odd form.

If & is a (real) Hilbert space with an inner product (-
inner product — likewise denoted (-

-) then so is &, its
-) — being given by

(1) (f18) = Zpos Shermt, Fisy oy 8y i)
Foven and Z_,, are then orthogonal to each other.

If the elements of & are differentiable (in some sense) we consider the differen-
tial operator d+6 on #,,, where d denotes exterior differentiation and § denotes
co-differentiation.’) Then d+§ carries even forms into odd forms, and vice versa.
We further write

0 =d+35, actingon Fy4,

d=d+3, acting on Z e, .
Note that (when defined)

(12) 90,00 C (d+06)* = d6+6d = 4,
the Laplacian (acting coefficientwise). This shows that d+ 46 is elliptic.

) The operator d+ J has been considered in an entirely different context by Gilkey [9]. Our &
and 4 correspond to —J and —4 in [13].
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We proceed to extend the main results of the preceding sections to the present
situation, which is more general — being, for k=2, nothing but a reformulation of
the complex situation considered up till now, cf. below. Note, however, that instead
of analytic functions Fin open sets wCC now just speak of even differential forms
F satisfying the generalized Cauchy—Riemann equation OF(=(d+0)F)=0 in
open sets wCR*. By ellipticity, such forms (currents) have real analytic coefficients
in w.

Actually, the proofs become simpler in the case k=3 because R* then has a
Green kernel, namely the Newtonian kernel. From Lemma 1.1¢) (valid in any dimen-
sion) we obtain the identification

BLD(RY) = 9Y(RY), k =3.

Lemma 2.1 extends, showing that 9 maps [D'(RY)],ys isometrically onto
[L2(RY)].yen (k=3). In particular,

(u, ), = Quldv), u, VE[D* (RM)oaas

where (-, -) and (-|-) denote the inner products on ['(RY)].. and [L*(R")].
derived, as in (11), from the corresponding inner products on 9*(R*) and L*(R"),
respectively.

If we replace 9'(Q) in [8] (in the case Q=R*, k=3) by [P (R")]oq, then the
part of [8, théoréme 11] which deals with (finely) armonic functions carries over with
unchanged proof. Using this result in place of Theorem A above, Theorem 2 carries
over as follows:

Theorem 4. Let E be a quasi-coanalytic subset of R¥, ke N. For any differen-
tial form fE[L*(E)leven the following are equivalent:

1) There exists a sequence (f,) C[L2(E)]eyen converging to f in norm in [L*(E)]eyen
such that each f, admits an extension to an even, real analytic differential form F,
for which OF,=0 in some open set ®,DE.

2) (f10p)=0 for every form @E[BLD(R"]oqq such that ¢=0 g.el%) in
CE (hence 0¢p=0 a.e. in CE).

3) There exists an odd form u, with coefficients defined and finely harmonic q.e.*®)
in E’, such that du=f a.e. in E’ (in the sense of fine differentiation).

The various remarks to Theorem 2 (with the exception of Remark 2.3 if k=3)
carry over mutatis mutandis, and so do Lemma 2.2 and its corollary. As to Section 3,
the construction in the proof of Proposition 3 carries over to produce an example of
a fine domain ECR*, k=2, and a form f€[L?(E)].,., having the equivalent proper-
ties 1), 2), 3) in Theorem 4, but failing to have the property of unique continuation.

10) When k=3, quasi-everywhere (g.e.) means: everywhere except in some polar set (=a set
of zero outer Newton capacity).
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In all of this, one may interchange throughout the terms “even’ and “‘odd”.
In odd dimension k the two versions thus obtained are, however, equivalent via the
involution *, cf. [13, p. 121]. For even k=4 the two versions do not appear to be
equivalent in any natural sense.

For k=2, both versions reduce to the complex situation from Sections 1—3
via the following identifications (writing (x, y) for the generic point of R?):

fdx+gdy, fH+gdxnady—f+ig,

considered as a function of z=x+iy. Then d and 9, as defined in the present section,
correspond to 9 and 0 from Section 2.

For k=3 we make the following identifications (writing (x, y, z) for the coordi-
nates of the generic point of R3):

Jodxndy ndz+fidx+fady+fydz— (fo, /15 /25 1)
fotfidyndz+fadzndx+fsdx ndy — (fy, f1,[2515)-

Then 9 and 9 both correspond to the operator

0 od, 0, O,

D= 0. 0 —0, 0, =[ 0 div)
o, 0. 0 —0, grad rot)’
0, =0, 09, O

where 0,=0/0x, etc. The operator D is studied, e.g., in ArZanyh [1]. — If we further
identify R* (as range space) with the quaternion field H as follows:

(a09 as, as, a3)'_> a0+ali+a2j+a3k’

then the operator D transforms into

Df = (0:)i+(9,/)j+ 0.k

for functions f from R3® to H.
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