A CONVERSE DEFECT RELATION FOR QUASIMEROMORPHIC MAPPINGS

Swati Sastry

Institute of Mathematical Sciences, CIT Campus Taramani, Madras -113, India; sastry@imsc.ernet.in

Abstract. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}^n$ be a nonconstant K-quasimeromorphic map. We prove first that given $C > 1$, there exists $\theta > 1$, θ depending only on n, K, C, such that whenever $a_1, \ldots, a_q \in \bar{\mathbf{R}}^n$ are distinct, we have $n(r, a_j) \leq CA(\theta r)$ for $j = 1, \ldots, q$ and $r \in E$, where $E = E(f, a_1, \ldots, a_q)$ has infinite logarithmic measure. This result is then used to obtain the following converse to the defect relation as established by S. Rickman. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a nonconstant K-quasimeromorphic map. Then there exist constants $C_1 > 1$ and $\theta_1 >$ 1, depending only on n and K such that for $a_1, \ldots, a_q \in \mathbb{R}^n$ any distinct points, we have $\limsup_{r\in E} \sum_{j=1}^q ((n(r, a_j))/(A(\theta_1 r)) - 1)_+ \leq C_1$ where E can be taken to be the same set as above. Any improvement or enlargement of the set E for the first result is immediately valid for the second (main) result.

1. Introduction

Quasiregular (and quasimeromorphic) mappings form a natural generalization of analytic (and meromorphic) maps to real n -dimensions. We abbreviate these classes as qr and qm . These functions retain some of the most important topological properties of analytic functions. A study of the value distribution theory of such maps has been a subject of interest for many years. For an overview of results in this area we refer to [R2].

Rickman has shown [R3] that a weak form of Picard's theorem holds for these mappings. Moreover in [R2], [R6] he proved that for a nonconstant, real n-dimensional, $n \geq 3$, K-qm function f, there exists a set $E \subset [1, \infty)$ of finite logarithmic measure, and a constant $C(n, K) < \infty$, depending only on n and K such that

$$
\limsup_{\substack{r \to \infty \\ r \notin E}} \sum_{j=1}^{q} \left(1 - \frac{n(r, a_j)}{A(r)}\right)_+ \le C(n, K),
$$

where a_1, \ldots, a_q are distinct points. For $n = 3$ this is qualitatively sharp, as can be seen from [R6, Theorem 1.7]. Thus Nevannlinna's defect relation generalizes in qualitative form to qm maps.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C65.

This is a portion of the author's thesis at Purdue University. Research partially supported by NSF.

In this paper, we consider a converse inequality. For a nonconstant meromorphic function f in the plane, it was shown by J. Miles [Mi] that there exist absolute constants $K < \infty$ and $C \in (0,1)$ and a set $E = E(f) \subset [1,\infty)$ having lower logarithmic density at least C such that if a_1, \ldots, a_q are distinct elements of the Riemann sphere, then

$$
\limsup_{\substack{r\to\infty\\ r\in E}}\sum_{j=1}^q\Bigl(\frac{n(r,a_j)}{A(r)}-1\Bigr)_+\leq K.
$$

Here we extend the above result, for meromorphic functions in the plane, to qm maps and all dimensions.

The proof breaks up into two parts: Sections 3 and Section 4. In Section 3 we show that $n(r, a_j) \leq CA(\theta r)$ for any given q points a_1, \ldots, a_q and r taking values in a set E of infinite logarithmic measure. This is an extension of $[R1,$ 5.16, where the case $q = 1$ is considered. The proof is a slight modification of the proof of the same. In Section 4 we first obtain an estimate which holds for all except possibly one value a_i . This estimate holds without the exceptional r-set, but the a_j chosen as exception does depend upon r. For such an a_j we then use the bound obtained in Theorem 3-1. An important open problem is to get a result such as Theorem 3-1 off an exceptional set which does not depend on a . The main analytic tool is path families, a natural generalization to space of extremal length.

I thank Professor David Drasin for suggesting this problem to me, as part of my thesis, and also for his constant encouragement and guidance.

2. Notation and definitions

We denote by \mathbf{R}^n the real euclidean *n*-space, and by $\bar{\mathbf{R}}^n$ the one-point compactification $\bar{\mathbf{R}}^n = \mathbf{R}^n \cup \{\infty\}$. Set

$$
B_r(x) = \{ y \in \mathbf{R}^n : |x - y| < r \}, \quad S(x, r) = \partial B_r(x),
$$

$$
B(r) = B_r(0), \quad S(r) = S(0, r), \quad \text{and} \quad S = S(1).
$$

The Lebesgue measure in \mathbb{R}^n is denoted by \mathscr{L}^n and the normalized k-dimensional Hausdorff measure in \mathbb{R}^n by \mathscr{H}^k . We set $\omega_{n-1} = \mathscr{H}^{n-1}(S)$. The Euclidean metric in \mathbf{R}^n is d. If $\gamma: \Delta \to \bar{\mathbf{R}}^n$ is a path, we denote its locus $\gamma \Delta$ by $|\gamma|$.

 $\bar{\mathbf{R}}^n$ is equipped with the spherical metric,

$$
d[x, y] = |x - y| / [(1 + |x|^2)(1 + |y|^2)]^{1/2}; \qquad x, y \neq \infty
$$

$$
d[x, \infty] = 1/(1 + |x|^2)^{1/2}.
$$

Definition. Let $n \geq 2$, and let G be a domain in \mathbb{R}^n . A continuous mapping $f: G \to \mathbf{R}^n$ is called *quasiregular* if (1) f is in the local Sobolev space $W^1_{n,loc}(G)$;

i.e., f has distributional partial derivatives which are locally $Lⁿ$ -integrable, and (2) there exists a constant $K, 1 \leq K \leq \infty$, such that

$$
(2-1)\t\t\t |f'(x)|^n \le KJ_f(x)
$$

holds for almost every $x \in G$. Here $|f'(x)|$ is the sup norm of the formal derivative $f'(x)$ defined by means of partial derivatives and $J_f(x)$ is the Jacobian determinant of f at x. The smallest K in $(2-1)$ is the outer dilatation $K_O(f)$, and the smallest $K, 1 \leq K \leq \infty$, for which

$$
J_f(x) \le K \inf_{|h|=1} |f'(x)h|^n
$$
 a.e.

holds is the inner dilatation $K_I(f)$ of f. $K(f) = \max(K_O(f), K_I(f))$ is the maximal dilatation of f. If f is quasiregular and $K(f) \leq K$, it is called Kquasiregular.

Let $G \subset \overline{\mathbf{R}}^n$ be a domain. A mapping $f: G \to \overline{\mathbf{R}}^n$ is called *quasimeromorphic* if either $fG = \{\infty\}$ or the set $E = f^{-1}(\infty)$ is discrete and $f_1 = f|G \setminus (E \cup \{\infty\})$ is quasiregular. We set $K(f) = K(f_1), K_O(f) = K_O(f_1)$, and $K_I(f) = K_I(f_1)$.

For a definition of the modulus of a family of curves we refer to [Vu].

If $f: \mathbf{R}^n \to \mathbf{R}^n$ is nonconstant and qm, the counting function $n(r, y)$ is defined for $r > 0$, $y \in \mathbb{R}^n$, by

$$
n(r, y) = \sum_{x \in f^{-1}(y) \cap \bar{B}(r)} i(x, f),
$$

where $i(x, f)$ is the local topological index; see [MRV1].

 $A(r)$ is the average of $n(r, y)$ over $\overline{\mathbf{R}}^n$ with respect to the spherical metric. If $r, t > 0, \nu(r, S(a, t))$ is the average of the counting function over the sphere $S(a, t)$ with respect to \mathscr{H}^{n-1} ,

$$
\nu(r, S(a, t)) = \frac{1}{\omega_{n-1}} \int_S n(r, a + ty) d\mathcal{H}^{n-1}(y),
$$

$$
A(r) = \frac{2^n}{\omega_n} \int_{\mathbf{R}^n} \frac{n(r, y)}{(1 + |y|^2)^n} dy.
$$

In particular, when $S(a,t) = S(t)$, we set $\nu(r, S(t)) = \nu(r, t)$, and also $\nu(r, 1) =$ $\nu(r)$.

Let $f: G \to \overline{\mathbf{R}}^n$ be qm. A domain D such that $\overline{D} \subset G$ is called a normal domain if $f \partial D = \partial f D$. If $x \in G$ and U is a normal domain such that $U \cap$ $f^{-1}(f(x)) = \{x\}$, then U is called a normal neighbourhood of x. By [MRV1, 2.10], every point in G has arbitrarily small normal neighbourhoods.

We repeatedly use the following result [R4, p. 228, 2.1]. If $\theta > 1$ and $r, s, t >$ 0, then

(2-2)
$$
\nu(\theta r, t) \ge \nu(r, s) - \frac{K_I |\log(t/s)|^{n-1}}{(\log \theta)^{n-1}}.
$$

We also need a comparison between averages on non-concentric spheres, S and $S(a, t) \subset B(1/2)$, for t small enough, say $t < 1/4$. This can be obtained by applying the above result to the map $\phi \circ f$, where ϕ is a quasiconformal map of $\bar{\mathbf{R}}^n$ onto $\bar{\mathbf{R}}^n$, which is the translation $x \to x - a$ in $B_t(a)$ and it is the identity map outside $B(1)$. ϕ can be taken to be 4-bilipschitz. Thus we get,

(2-3)
$$
\nu(r, S(a,t)) \leq \nu(2r) + c_1(\log(1/t))^{n-1},
$$

where we may take $c_1 = 4^{2n-2} K/(\log 2)^{n-1}$, since ϕ is 4^{2n-2} -quasiconformal.

3. An upper bound on $n(r, a)/A(\theta r)$

Theorem 3-1. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}^n$ be a nonconstant K-quasimeromorphic map. Then for each $C > 1$, there exists $\theta > 1$, $\theta = \theta(C, n, K)$, such that for every $a_1, \ldots, a_q \in \mathbf{R}^n$, there exists a set $E = E(a_1, \ldots, a_q) \subset [1, \infty)$, with $\int_E d\lambda/\lambda = \infty$, such that

(3-2)
$$
n(r, a_j) \leq CA(\theta r) \quad \text{for } j = 1, \dots q, \quad r \in E.
$$

Note that here the role of E is different from that in [R4]. We begin with an adaptation of [R1, 5.4] to the case that $a \neq 0$. It is a quantification of the fact that a nonconstant qm map is light.

Lemma 3-3. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}^n$ be a nonconstant K-quasimeromorphic map. Choose $1 < u < v$, $t > 0$ and $r > 0$. Let $a \in \mathbb{R}^n$ be given. Set

(3-4)
$$
H_{a,f}(r,t) = \{ \lambda \in [r,ur] : S(\lambda) \cap f^{-1}(B_t(a)^c) \neq \emptyset \},
$$

$$
\phi_{a,f}(r,t) = \int_{H_{a,f}(r,t)} \frac{d\lambda}{\lambda}.
$$

Then,

(3-5)
$$
\nu(vr, S(a,t)) \geq \left[1 - \frac{2\omega_{n-1}K_I K_O}{c_n \phi_{a,f}(r,t)(\log v/u)^{n-1}}\right] n(r,a)
$$

where $c_n > 0$ is the constant in [V1, 10.11] which depends only on n.

Proof. Using $(2-2)$, we may obtain [R1, 5.5] without the constant c' , as

(3-6)
$$
\nu(vr,t) \geq \left[1 - \frac{2K_I K_O \omega_{n-1}}{c_n \phi(r,t) (\log v/u)^{n-1}}\right] n(r,0).
$$

Let $g(z) = f(z) - a$. Then $\nu_g(vr, t) \equiv \nu_f(vr, S(a, t))$ and $n_g(r, 0) = n_f(r, a)$. Let $\zeta = w-a$, so that $g(z) = \zeta \circ f(z)$, and also $S(\lambda) \cap g^{-1}(B(t)^c) = S(\lambda) \cap f^{-1}(B_t(a)^c)$. Hence $H_{0,q}(r,t) = H_{a,f}(r,t)$ and $\phi_{0,q}(r,t) = \phi_{a,f}(r,t)$. Now (3-6) applied to g gives (3-5).

Proof of Theorem 3-1. We divide the proof into three steps. The second step proves the theorem under the normalization $a_1, \ldots, a_q \in B(1/2)$. The first and third steps are merely to facilitate this normalization.

Step I: Let $C > 1$ be given. Let $a_1, \ldots a_q \in \mathbb{R}^n$. By a rotation of the sphere we may assume that $a_1, \ldots, a_q \in B(\tau/2)$ for some $\tau \geq 1$. Let $\sigma > 0$ be such that the balls $\{\bar{B}_{\sigma\tau}(a_j)\}\)$ are disjoint and $\{\bar{B}_{\sigma\tau}(a_j)\}\subset B(\tau/2)$ for all j. We claim that for given $r_0 > 0$, there exists $r_1 \ge r_0$ such that for all $r \in [r_1, u^{1/4}r_1]$,

(3-7)
$$
n(r, a_j) \leq CA(\theta r) \quad \text{for } j = 1, \dots, q,
$$

where $u > 1$ is defined in (3-11). By repeating this argument, we obtain our set $E = \bigcup_{i=1}^{\infty} [r_i, u^{1/4}r_i],$ so that E has infinite logarithmic measure. We may assume that $n(r_0, a_j) \ge 1$ for all j, since the j's for which $n(r, a_j) = 0$ for all r satisfy the claim. Let

$$
(3-8) \t C' = C^{1/4} > 1.
$$

By [R1, 4.10] we choose r_0 so that for $r \ge r_0$,

$$
(3-9) \t\t \nu(r) < C'A(2r).
$$

We assume ∞ is an essential singularity (i.e. f has no limit in \mathbb{R}^n as we approach ∞), for otherwise f extends to \mathbf{R}^n as a qm map and it has finite degree [MRV2], [MS]. By [R1, 3.1] we then have that $A(r) \to \infty$. So we may choose r_0 such that for $r \geq r_0$

$$
(3-10) \tC'^{2} K_I \left(\frac{\log \tau}{\log 2}\right)^{n-1} + C' c_1 \left(\log \frac{1}{\sigma}\right)^{n-1} < (C'^{4} - C'^{3}) A(r).
$$

Step II: In this step we replace f by f/τ and a_1, \ldots, a_q by $a_1/\tau, \ldots, a_q/\tau$. However, for convenience of notation, we still call them f and a_1, \ldots, a_q . Note that we are now in the situation $a_1, \ldots, a_q \in B(1/2)$, $\{\overline{B}_{\sigma}(a_j)\}\$ disjoint and each $\bar{B}_{\sigma}(a_j) \subset B(1/2)$. In order to apply Lemma 3-3 we define $u > 1$ by

(3-11)
$$
\frac{1}{C'} = 1 - \frac{4\omega_{n-1}K_OK_I}{c_n(\log u)^n}
$$

where $c_n > 0$ is as in [V1, 10.11].

For $u > 1$, as above and $t, r > 0$, let $\phi_j(r, t) \equiv \phi_{a_j, f}(r, t)$ be as in Lemma 3-3, and let

(3-12)
$$
\Psi(t) = \sup_{r \ge r_0} \min_{1 \le j \le q} \phi_j(r, t).
$$

Then Ψ is decreasing in t.

Case (i): $\Psi(\sigma) \ge (7/8) \log u$.

Then, by the definition of $\Psi(\sigma)$, there exists $r_1 \geq r_0$ such that $\min_j \phi_j(r_1, \sigma)$ \geq (3/4) log *u*; i.e.

(3-13)
$$
\phi_j(r_1, \sigma) \ge (3/4) \log u, \qquad 1 \le j \le q.
$$

From the definition of $\phi_j(r_1, \sigma)$, we note that

$$
\phi_j(r_1, \sigma) = \int_{H_j(r_1, \sigma)} \frac{d\lambda}{\lambda} = \int_{H_j(r_1, \sigma) \cap [r_1, u^{1/4}r_1]} \frac{d\lambda}{\lambda} + \int_{H_j(r_1, \sigma) \cap [u^{1/4}r_1, ur_1]} \frac{d\lambda}{\lambda}
$$

$$
\leq \frac{1}{4} \log u + \int_{H_j(r_1, \sigma) \cap [u^{1/4}r_1, ur_1]} \frac{d\lambda}{\lambda}.
$$

From this and (3-13) we obtain for $r \in [r_1, u^{1/4}r_1]$ and for all $j = 1, \ldots, q$,

(3-14)
$$
\phi_j(r,\sigma) \ge \int_{H_j(r_1,\sigma)\cap [u^{1/4}r_1,ur_1]} \frac{d\lambda}{\lambda} \ge \frac{1}{2} \log u.
$$

We now apply Lemma 3-3 with $a = a_j$, $t = \sigma$, $r \in [r_1, u^{1/4}r_1]$, $v = u^2$ along with $(3-14)$ and $(3-11)$ to obtain

(3-15)

$$
\nu(vr, S(a_j, \sigma)) \ge \left[1 - \frac{2\omega_{n-1}K_I K_O}{c_n \phi_j(r, \sigma)(\log u)^{n-1}}\right] n(r, a_j)
$$

$$
\ge \left[1 - \frac{4\omega_{n-1}K_I K_O}{c_n(\log u)^n}\right] n(r, a_j)
$$

$$
= \frac{1}{C'} n(r, a_j) \qquad j = 1, ..., q.
$$

Now using (2-3) with $t = \sigma$ and (3-15), we get for $r \in [r_1, u^{1/4}r_1]$ and $j = 1, \ldots, q$, that

$$
(3-16) \t n(r, a_j) \le C'\nu(vr, S(a_j, \sigma)) \le C'\nu(2vr) + C'c_1(\log 1/\sigma)^{n-1}.
$$

Case (ii): $\Psi(\sigma) < (7/8) \log u$.

Since f is discrete, for each fixed r, $\phi_i(r, t) \rightarrow \log u$ as $t \rightarrow 0$. Let $t_0 =$ $\inf\{t : t \leq \sigma, \Psi(t) \leq (7/8) \log u\}.$ One checks that $t_0 > 0$. We may assume $t_0 < \sigma$. Let δ be so small that

(3-17)
$$
0 < \delta < \min\{\frac{1}{2}t_0, \sigma - t_0\}, \qquad \frac{4\delta}{t_0} < (\log 2) \left(\frac{C' - 1}{K_I C'^2}\right)^{1/(n-1)}
$$

and let

(3-18)
$$
t_1 = t_0 - \delta
$$
, $t'_1 = t_0 + \delta$.

Since $\Psi(t_1) > \frac{7}{8}$ $\frac{7}{8} \log u$, there exists $r_1 \ge r_0$ with $\min_j \phi_j(r_1, t_1) \ge \frac{3}{4}$ $\frac{3}{4} \log u$; i.e.

$$
\phi_j(r_1, t_1) \ge \frac{3}{4} \log u, \qquad j = 1, ..., q.
$$

From this we may conclude, exactly as in Case (i), that for $r \in [r_1, u^{1/4}r_1]$,

(3-19)
$$
\phi_j(r, t_1) \ge \frac{1}{2} \log u, \qquad j = 1, ..., q.
$$

Now we apply Lemma 3-3 with $r \in [r_1, u^{1/4}r_1], t = t_1, a = a_j, v = u^2$, along with $(3-19)$ and $(3-11)$, to obtain

$$
\nu(vr, S(a_j, t_1)) \ge \left[1 - \frac{2\omega_{n-1}K_I K_O}{c_n \phi_j(r, t_1)(\log u)^{n-1}}\right] n(r, a_j)
$$
\n
$$
\ge \left[1 - \frac{4\omega_{n-1}K_I K_O}{c_n(\log u)^n}\right] n(r, a_j)
$$
\n
$$
\ge \frac{1}{C'} n(r, a_j), \qquad 1 \le j \le q.
$$

Let $t_0 < t < t'_1$. By (3-12), $\Psi(t) \equiv \sup_{r \ge r_0} \min_j \phi_j(r, t) \le (7/8) \log u$, and since $2vr \ge r \ge r_0$, we find for an appropriate $1 \le l \le q$, that $\phi_l(2vr, t) \equiv$ $\min_j \phi_j(2vr, t) \leq (7/8) \log u$. Then by the definition of $\phi_l(2vr, t)$ there exists $\varrho \in [2vr, 2vur]$ such that $S(\varrho) \cap f^{-1}(B_t(a_l)^c) = \emptyset$. The analysis of [MRV1, 2.5], which is stated only for qr maps but applies as well to qm maps, shows that every component of $f^{-1}(B_t(a_t)^c)$ which meets $\bar{B}(\varrho)$ is a normal domain contained in $B(\varrho)$. Hence

(3-21)
$$
n(\varrho, y) = n(\varrho, z) \quad \text{for all } y, z \in \overline{B}_t(a_l)^c.
$$

In particular, since $t < t'_1 < \sigma$ and the $\{\overline{B}(a_j, \sigma)\}\$ are disjoint, we have for $j \neq l$, $n(\varrho, y) = n(\varrho, a_j + t_1y)$ for all $y \in S$. And so on averaging,

(3-22)
$$
\nu(\varrho) = \nu(\varrho, S(a_j, t_1)) \qquad j \neq l.
$$

For $j = l$, since $t < t'_1$, we note from $(3-21)$ that $n(\varrho, y) = n(\varrho, a_l + t'_1 y)$ for all $y \in S$. So again on averaging,

(3-23)
$$
\nu(\varrho) = \nu(\varrho, S(a_l, t'_1)).
$$

We now replace $\nu(\varrho, S(a_l, t'_1))$ by $\nu(\varrho, S(a_l, t_1))$ with controllable error. Letting $\theta = 2, s = t_1, t = t'_1, r = vr$, we obtain from (2-2) that

$$
(3-24) \qquad \nu(vr, S(a_l, t_1)) \leq \nu(2vr, S(a_l, t'_1)) + \frac{K_I(\log(t'_1/t_1))^{n-1}}{(\log 2)^{n-1}}.
$$

Now we find, using $(3-18)$ and $(3-17)$, that

$$
\log \frac{t_1'}{t_1} = \log \left(1 + \frac{2\delta}{t_0 - \delta} \right) < \frac{2\delta}{t_0 - \delta} < \frac{4\delta}{t_0} < (\log 2) \left(\frac{C' - 1}{K_I C'^2} \right)^{1/(n-1)}.
$$

Hence, from $(3-24)$,

$$
(3-25) \qquad \nu\big(vr, S(a_l, t_1)\big) \le \nu\big(2vr, S(a_l, t'_1)\big) + (C'-1)/{C'}^2.
$$

Since $n(r, a_l) \geq n(r_0, a_l) \geq 1$ as stated in Step I, we have from (3-20) that $\nu\big(v, S(a_l, t_1)\big) \geq 1/C'$. Substituting this inequality on the right hand side of (3-25) and unraveling, we obtain,

$$
\nu\big(vr, S(a_l, t_1)\big) \le C' \nu\big(2vr, S(a_l, t'_1)\big)
$$

.

.

But since $2vr \le \varrho \le 2vur$, the last inequality, together with (3-20) and (3-23) gives for $r \in [r_1, u^{1/4}r_1],$

(3-26)
$$
n(r, a_l) \leq C'^2 \nu(\varrho, S(a_l, t'_1)) = C'^2 \nu(\varrho).
$$

And again using the fact that $2vr \leq \varrho$ along with (3-20) and (3-22), we find for $j \neq l, r \in [r_1, u^{1/4}r_1]$

(3-27)
$$
n(r,a_j) \leq C' \nu(\varrho, S(a_j,t_1)) = C' \nu(\varrho).
$$

Using the inequality $2vr \leq \varrho$, we conclude in both cases, from (3-26), (3-27) and $(3-16)$ that, for $j = 1, \ldots, q, r \in [r_1, u^{1/4}r_1],$

(3-28)
$$
n(r, a_j) \leq C'^2 \nu(\varrho) + C' c_1 (\log 1/\sigma)^{n-1}.
$$

Finally, we recall the change of scale we made in the beginning of Step II, and conclude from (3-28) that for $r \in [r_1, u^{1/4}r_1]$,

(3-29)
$$
n(r, a_j) \leq C'^2 \nu(\varrho, \tau) + C' c_1 (\log 1/\sigma)^{n-1}
$$

for the original f and a_1, \ldots, a_q .

Step III: First we use (2-2) to replace $\nu(\varrho, \tau)$ by $\nu(2\varrho)$ in (3-29) and get

$$
n(r, a_j) \le C'^2 \nu(2\varrho) + C'^2 K_I \left(\frac{\log \tau}{\log 2}\right)^{n-1} + C' c_1 (\log 1/\sigma)^{n-1}
$$

Using (3-9), (3-10) (3-8) and $\varrho \le 2uvr$ we now get for $r \in [r_1, u^{1/4}r_1]$ and $j =$ $1, \ldots, q$,

$$
n(r, a_j) \leq C'^3 A(4\varrho) + (C'^4 - C'^3)A(4\varrho) \leq CA(\theta r),
$$

where $\theta = 8uv = 8u^3$. This proves the theorem.

4. The main result

We first prove an intermediate result, i.e., the estimate (4-2). This is an essential fact needed for the main theorem.

Theorem 4-1. Let $n \geq 2$ and $K \geq 1$. There exist positive constants $\theta_0 = \theta_0(n,K)$, $b = b(n,K)$ such that if $f: \mathbb{R}^n \to \mathbb{R}^n$ is a nonconstant K-qm map and $a_1, \ldots, a_q \in \mathbb{R}^n$, are any distinct points, with $q > 1$, then there exist $r_0 = r_0(a_1, \ldots, a_q, f) > 0$ such that for each $r \ge r_0$, we have

(4-2)
$$
\sum_{\substack{j=1 \ j \neq J(r)}}^{q} n(r, a_j) \leq \left[q + \frac{4K_I b}{(\log 2)^{n-1}} + 2 \right] A(16\theta_0 r),
$$

for some $J(r) \in \{1, \ldots, q\}$. The constants θ_0 and b are given by

(4-3)
$$
\log \theta_0 = \frac{\omega_{n-1} K_O c_1}{2^{n-4} c_n n}, \qquad b = \frac{2K_O \omega_{n-1}}{c_n \log \theta_0}
$$

with c_1 and c_n as in (2-3) and (3-5) respectively.

Observe that there is no exceptional set for the r -values here. However, the estimate obtained is close to what we want, save for one $a_{J(r)}$. For this $a_{J(r)}$ we use Theorem 3-1. We thus obtain our main result, Theorem 4-26, on the same exceptional set of r-values as that obtained in Theorem 3-1. It is worth noting that any enlargement or improvement of the set E of Theorem 3-1, is also valid for Theorem 4-26.

Proof of Theorem 4-1. Again we divide the proof into three steps with main body of the proof being in the second step.

Step I: We may assume, as in the proof of Theorem 3-1, that ∞ is an essential singularity, so that $A(r) \to \infty$ as $r \to \infty$. By a rotation we assume that $a_1, \ldots, a_q \in \mathbb{R}^n$. Let $\tau \geq 1$ and $\sigma > 0$ be such that $B_{\sigma \tau}(a_j) \subset B(\tau/2)$, and the ${\overline{B}_{\sigma\tau}(a_j)}$ are disjoint. We set $r_0 = \max(r_1, r_2)$, where r_1 and r_2 are obtained below. Choose $r_1 = r_1(\tau, q, f) > 0$ such that for $r \geq r_1$,

(4-4)
\n(i)
$$
\left[q + \frac{K_I b}{(\log 2)^{n-1}}\right] K_I \left(\frac{\log \tau}{\log 2}\right)^{n-1} \le \frac{K_I b}{(\log 2)^{n-1}} \nu(r)
$$

\n(ii) $\nu(r) < \frac{q}{q-1} A(2r)$ by [R1, 4.10].

Step II: Again by replacing f by f/τ we reduce to the case $\tau = 1$. Since

 $\nu(r) \to \infty$ as $r \to \infty$, we can choose $r_2 = r_2(\sigma, q, f) > 0$ such that for $r \ge r_2$,

$$
(i) \quad [b\nu(2\theta_0 r)]^{1/n} + 1 < [2b\nu(2\theta_0 r)]^{1/n},
$$
\n
$$
(ii) \quad \log 2 < \left(b\nu(2\theta_0 r)\right)^{1/(n-1)} - \left(b\nu(2\theta_0 r)\right)^{1/n},
$$
\n
$$
(iii) \quad \frac{1}{1 + \left(\log(\sigma/2)\right) / \left(b\nu(2\theta_0 r)\right)^{1/(n-1)}} < 2^{1/n},
$$
\n
$$
(iv) \quad 2 \exp\left(-\frac{1}{2}\left(b\nu(2\theta_0 r)\right)^{1/n}\right) < \sigma,
$$
\n
$$
(v) \quad c_1 qb < \left(b\nu(2\theta_0 r)\right)^{1/n}.
$$

Fix $r \ge r_2$. Since f is $qm, \mathscr{H}^n(\partial B(\theta_0 r)) = 0$ implies $\mathscr{H}^n(f(\partial B(\theta_0 r))) = 0$, by [Vu, 10.5(3)]. From this and Fubini's theorem it follows that $\mathscr{H}^{n-1}(f(\partial B(\theta_0 r)) \cap$ $S(a_j, \sigma_1)$ = 0 for a.e.

$$
\sigma_1 \in \left[\exp \left\{ - \left(b\nu(2\theta_0 r) \right)^{1/(n-1)} \right\}, 2 \exp \left\{ - \left(b\nu(2\theta_0 r) \right)^{1/(n-1)} \right\} \right],
$$

for each $j = 1, \ldots, q$. Hence there exists $\varepsilon_1 \in [1, 2]$ such that for

(4-6)
$$
\sigma_1 = \varepsilon_1 \exp \left\{-\left(b\nu(2\theta_0 r)\right)^{1/(n-1)}\right\}
$$

(4-7)
$$
\mathscr{H}^{n-1}(f(\partial B(\theta_0 r)) \cap S(a_j, \sigma_1)) = 0 \quad \text{for all } j = 1, ..., q.
$$

Then by $(4-6)$ and $(4-5)$ (ii) we have

(4-8)
$$
\sigma_1 \leq 2 \exp \left\{ - \left(b\nu (2\theta_0 r) \right)^{1/(n-1)} \right\} < \exp \left\{ - \left(b\nu (2\theta_0 r) \right)^{1/n} \right\} = \sigma_2
$$

and by $(4-5)$ (iv),

$$
\sigma_2 = \exp\left\{-\left(b\nu(2\theta_0 r)\right)^{1/n}\right\} < \sigma.
$$

Let α_j and β_j be the maps of S onto $S(a_j, \sigma_1)$ and $S(a_j, \sigma_2)$ respectively given by $\alpha_j(y) = a_j + \sigma_1 y, \ \beta_j(y) = a_j + \sigma_2 y.$

For $y \in S$, let γ_y^j : $[0,1] \to \mathbf{R}^n$ be the line segment joining a_j to $\beta_j(y)$, parametrized so that γ_y^j : $[0, 1/2]$ joins a_j to $\alpha_j(y) \in S(a_j, \sigma_1)$, gyj : $[1/2, 1]$ joins $\alpha_i(y)$ to $\beta_i(y) \in S(a_i, \sigma_2)$.

Comparison of $n(r, a_j)$ with $n(\theta_0 r, \alpha_j(y))$: Let $f | X$ denote f restricted to X and let $\Lambda_y^j = {\lambda_1, ..., \lambda_h}$ be a maximal sequence of $f | B(4\theta_0 r + 1)$ -liftings of $\gamma_y^j \mid [0, 1/2]$ starting at points of $f^{-1}(a_j) \cap \overline{B}(r)$, as defined in [R1]. Then necessarily $h = n(r, a_i)$. The following crucial lemma has been inspired by the proof of [R2, 3.2].

Lemma 4-9. The family of curves

$$
\mathscr{F}_j = \bigcup\nolimits_{y \in S} \Lambda^j_y
$$

lies completely in $B(\theta_0 r)$, except perhaps for one $j = J(r) \in \{1, ..., q\}$.

Proof. Note that by definition, all paths in \mathscr{F}_j start at preimages of a_j in $\overline{B}(r)$. We prove the lemma by contradiction. Suppose there exist $j \neq k$ and $\eta_j \in \mathscr{F}_j$, $\eta_k \in \mathscr{F}_k$, such that η_j , $\eta_k \nsubseteq B(\theta_0 r)$. Let Γ be the family of paths in $B(\theta_0 r) \setminus \overline{B}(r)$ joining the loci $|\eta_i|$ and $|\eta_k|$. Note that $|f(\eta_i)|$ and $|f(\eta_k)|$ are line segments starting at a_j and a_k and contained in $\overline{B}(a_j, \sigma_1)$ and $\overline{B}(a_k, \sigma_1)$ respectively. Hence each path in $f\Gamma$ contains sub-paths which join $S(a_j, \sigma_1)$ to $S(a_i, \sigma)$ and $S(a_k, \sigma)$ to $S(a_k, \sigma_1)$. Set

$$
\varrho(z) = \begin{cases} \left(2\log(\sigma/\sigma_1)|z - a_j|\right)^{-1}, & \sigma_1 < |z - a_j| < \sigma \\ \left(2\log(\sigma/\sigma_1)|z - a_k|\right)^{-1}, & \sigma_1 < |z - a_k| < \sigma \\ 0, & \text{otherwise.} \end{cases}
$$

Then ϱ is well-defined by the choice of σ . Also, ϱ is admissible for the family $f\Gamma$, and by [MRV1, 3.2] we obtain

$$
M(\Gamma) \leq K_O \int_{\mathbf{R}^n} \varrho(z)^n n(\theta_0 r, z) d\mathcal{L}^n(z)
$$

=
$$
\frac{K_O}{(2 \log(\sigma/\sigma_1))^n} \int_{\{\sigma_1 < |z - a_j| < \sigma\}} n(\theta_0 r, z) |z - a_j|^{-n} d\mathcal{L}^n(z)
$$

+
$$
\frac{K_O}{(2 \log(\sigma/\sigma_1))^n} \int_{\{\sigma_1 < |z - a_k| < \sigma\}} n(\theta_0 r, z) |z - a_k|^{-n} d\mathcal{L}^n(z)
$$

(4-10) = I + II.

We obtain an estimate for I . Exactly the same estimate holds for II as well. By transfering the integral of (4-10) into polar coordinates, we find that,

$$
I = K_O(2\log(\sigma/\sigma_1))^{-n} \int_{\sigma_1}^{\sigma} \int_S n(\theta_0 r, a_j + \tau y) d\mathcal{H}^{n-1}(y) \tau^{-1} d\tau
$$

$$
\equiv K_O \omega_{n-1} (2\log(\sigma/\sigma_1))^{-n} \int_{\sigma_1}^{\sigma} \nu(\theta_0 r, S(a_j, \tau)) \tau^{-1} d\tau.
$$

Using (2-3), with $\theta = \theta_0$,

$$
I \leq \frac{K_O \omega_{n-1}}{\left(2\log(\sigma/\sigma_1)\right)^n} \int_{\sigma_1}^{\sigma} \left\{\nu\left(2\theta_0 r\right) + c_1\left(\log(1/\tau)\right)^{n-1}\right\} \tau^{-1} d\tau
$$
\n
$$
\leq \frac{K_O \omega_{n-1}}{\left(2\log(\sigma/\sigma_1)\right)^n} \left[\nu\left(2\theta_0 r\right) \log(\sigma/\sigma_1) + c_1 \frac{\left(\log(1/\sigma_1)\right)^n}{n}\right]
$$
\n
$$
\leq \frac{K_O \omega_{n-1}}{2^n} \left[\frac{\nu(2\theta_0 r)}{\left(\log(\sigma/\sigma_1)\right)^{n-1}} + \frac{c_1}{n} \left(\frac{\log 1/\sigma_1}{\log \sigma/\sigma_1}\right)^n\right]
$$

Now using (4-6), the fact that $\varepsilon_1 \in [1, 2]$, and (4-5) (iii), we find that

$$
\frac{\log(1/\sigma_1)}{\log(\sigma/\sigma_1)} = \frac{\log(1/\varepsilon_1) + (b\nu(2\theta_0 r))^{1/(n-1)}}{\log \sigma + \log(1/\varepsilon_1) + (b\nu(2\theta_0 r))^{1/(n-1)}}
$$
\n
$$
\leq \frac{(b\nu(2\theta_0 r))^{1/(n-1)}}{\log \sigma + \log(1/2) + (b\nu(2\theta_0 r))^{1/(n-1)}}
$$
\n
$$
= \frac{1}{1 + (\log \sigma/2) / (b\nu(2\theta_0 r))^{1/(n-1)}} \leq 2^{1/n}.
$$

Also, since ε_1 < 2, (4-6) and (4-5) (iv) yield that

$$
\frac{\sigma}{\sigma_1} > \frac{2 \exp\{-\frac{1}{2} \big(b\nu(2\theta_0 r) \big)^{1/n}\}}{\varepsilon_1 \exp\{-\big(b\nu(2\theta_0 r) \big)^{1/(n-1)}\}} > \exp\{\frac{1}{2} \big(b\nu(2\theta_0 r) \big)^{1/(n-1)}\},
$$

and hence

(4-13)
$$
\left(\log \frac{\sigma}{\sigma_1}\right)^{n-1} > \frac{b\nu(2\theta_0 r)}{2^{n-1}}.
$$

Substituting $(4-12)$ and $(4-13)$ into $(4-11)$ we get

$$
I \leq K_O \omega_{n-1} 2^{-n} \left[\frac{2^{n-1}}{b} + \frac{2c_1}{n} \right] \leq \frac{K_O \omega_{n-1}}{2b} + \frac{\omega_{n-1} K_O c_1}{2^{n-1} n}.
$$

The same estimate holds for II . Substituting these and the value of b from $(4-3)$ into (4-10) we obtain

$$
M(\Gamma) \le \frac{K_O \omega_{n-1}}{b} + \frac{\omega_{n-1} K_O c_1}{2^{n-2} n} = \frac{c_n \log \theta_0}{2} + \frac{\omega_{n-1} K_O c_1}{2^{n-2} n}.
$$

Further by [V1, (10.12)], $M(\Gamma) \geq c_n \log \theta_0$ so that

$$
\frac{c_n \log \theta_0}{2} \le \frac{\omega_{n-1} K_O c_1}{2^{n-2} n}.
$$

But this contradicts our choice of θ_0 in (4-3). This proves the lemma.

From this lemma, we find that for $j \neq J(r)$, $\mathscr{F}_j \subset B(\theta_0 r)$. If $J(r)$ does not exist, so that $\mathscr{F}_j \subset B(\theta_0 r)$ for all j, we then set $J(r) = q$. Fix $j \neq J$, and $y \in S$. Then $\Lambda_y^j = \{\lambda_1, \ldots, \lambda_h\} \subset B(\theta_0 r)$, and since Λ_y^j is a maximal sequence of $f | B(4\theta_0 r + 1)$ lifts of $\gamma_y^j | [0, 1/2]$ we have , for all $j \neq J, y \in S$,

$$
(4-14) \qquad \qquad h = n(r, a_j) \le n(\theta_0 r, \alpha_j(y)).
$$

Now set

(4-15)
$$
A_j = S(a_j, \sigma_1) \cap \{ f(B_f \cap \bar{B}(8\theta_0 r)) \cup f(\partial B(\theta_0 r)) \}
$$

where B_f is the branch set, i.e. the set of points where f is not a local homeomorphism. From [MR, 3.1] we note that for all $j = 1, \ldots, q$,

$$
\mathcal{H}^{n-1}(S(a_j,\sigma_1)\cap f\big(B_f\cap \bar{B}(8\theta_0 r)\big)\big)=0.
$$

This along with (4-7) implies that $\mathscr{H}^{n-1}(A_j) = 0$ for all j. Further, we have that $\mathscr{H}^{n-1}(\alpha_j^{-1}(A_j)) = 0$ for all j. Set

(4-16)
$$
S' = S \setminus \left[\bigcup_{j=1}^{q} \alpha_j^{-1}(A_j) \right].
$$

Comparison of $n(\theta_0 r, \alpha_j(y))$ with $n(2\theta_0 r, \beta_j(y))$. For any $y \in S$, we redefine $\Lambda_y^j = {\lambda_1, ..., \lambda_g}$ to be a maximal sequence of $f | B(4\theta_0 r + 1)$ -liftings of $\gamma_y^j | [1/2, 1]$, starting at points of $f^{-1}(\alpha_j(y)) \cap \bar{B}(\theta_0 r)$, where $g = n(\theta_0 r, \alpha_j(y))$. Let the set of such sequences be Ω_y^j . For $\Lambda_y^j \in \Omega_y^j$ we set

$$
N(\Lambda_y^j) = \text{card } \{ \nu : |\lambda_\nu| \subset \bar{B}(2\theta_0 r) \}
$$

and define

(4-17)
$$
p_j(y) = \sup_{\Lambda_y^j \in \Omega_y^j} N(\Lambda_y^j).
$$

Fix an extremal sequence $\hat{\Lambda}_y^j \in \Omega_y^j$; i.e. $N(\hat{\Lambda}_y^j) = p_j(y)$. Then by the definition of a maximal sequence of f -liftings, we have,

$$
(4-18) \t\t\t\t p_j(y) \le n(2\theta_0 r, \beta_j(y)).
$$

We shall integrate $n(\theta_0 r, \alpha_j(y)) - p_j(y)$ on S and for this we need the following lemma, which is almost entirely an imitation of [R4, 4.1].

Lemma 4-19. Let S' and p_j be as in (4-16) and (4-17), then p_j is upper semi-continuous on S' .

Proof. Let $y_0 \in S'$, then by (4-16) and (4-15), $\alpha_j(y_0) \notin f(B_f \cap \overline{B}(8\theta_0 r)) \cup$ $f(\partial B(\theta_0 r))$. So if $f^{-1}(\alpha_j(y_0)) \cap \overline{B}(\theta_0 r) = \{x_1, \ldots, x_g\}$, with $g = n(\theta_0 r, \alpha_j(y_0))$, then $\{x_1, \ldots, x_g\} \subset B(\theta_0 r)$. Let y_1, y_2, \ldots be a sequence in S' such that $y_h \to y_0$. The lemma asserts that $(p_{01}) < n_s (y_0)$.

$$
\limsup_{h\to\infty} p_j(y_h) \leq p_j(y_0)
$$

By choosing a subsequence we may assume that for some integer m, $p_i(y_h) \equiv m$ holds for all $h \geq 1$. Also $n(\theta_0 r, \alpha_j(y))$ is upper semi-continuous in y because $n(r, y)$ is. Hence if $g_h = n(\theta_0 r, \alpha_j(y_h))$, then $\limsup_{h\to\infty} g_h \leq g$. We choose and fix the following:

(i) Normal neighbourhoods $V_1, \ldots, V_g \subset B(\theta_0 r)$ of the points x_1, \ldots, x_g , respectively, such that $\alpha_j(y_h) \in \bigcap_{\nu=1}^g f(V_\nu)$, $h \geq 1$. (This then implies $f^{-1}(\alpha_j(y_h))$) $\bigcap V_{\nu} \neq \emptyset$ for all ν , so that $g_h \geq g$; i.e. $g_h = g$.)

(ii) For each $h \geq 1$ a maximal sequence $\hat{\Lambda}_{y_h}^j = \{\lambda_{h,1}, \ldots, \lambda_{h,g}\} \in \Omega_{y_h}^j$ such that $\lambda_{h,\nu}$ starts at a point $\zeta_{h,\nu}$ in $f^{-1}(\alpha_j(y_h)) \cap V_{\nu}$ for $\nu = 1, \ldots, g$, and $|\lambda_{h,\nu}| \subset$ $B(2\theta_0r)$ for $\nu = 1, \ldots, m$ (since $p_i(y_h) \equiv m$).

We divide the ν 's, $1 \leq \nu \leq g$, into two groups. First let $\nu \in \{1, \ldots, m\}$ be fixed. We claim that the family $\{\lambda_{h,\nu}: h = 1, 2, ...\}$ is equicontinuous on $1/2 \leq t \leq 1$. Indeed, choose $\varepsilon > 0$. For $t \in [1/2, 1]$ there exists $\delta_t > 0$ such that $U(\xi, f, \varrho)$ is a normal neighbourhood of ξ with $d(U(\xi, f, \varrho)) < \varepsilon$ for each $\xi \in f^{-1}(\gamma_{y_0}^j(t)) \cap \bar{B}(2\theta_0 r)$, and

$$
(4-20)\ \bar{B}(2\theta_0 r) \cap f^{-1}(B(\gamma_{y_0}^j(t), \varrho)) \subset \bigcup_{\xi} \{ U(\xi, f, \varrho) : \xi \in f^{-1}(\gamma_{y_0}^j(t)) \cap \bar{B}(2\theta_0 r) \}
$$

whenever $0 < \varrho < \delta_t$. We cover $\gamma_{y_0}^j([1/2, 1])$ with a finite number of balls $B(\gamma_{y_0}^j(t), \delta_t/2)$, say $B(\eta_u, \varrho_u), u = 1, \ldots, v$. Again by taking a subsequence of the $\{y_h\}$ we have $\gamma_{y_h}^j([1/2, 1]) \subset \bigcup_{u=1}^v B(\eta_u, \varrho_u)$, and $|\alpha_j(y_h) - \alpha_j(y_0)| \leq \delta =$ $\min_{1 \leq u \leq v} {\varrho_u/s}, |\beta_j(y_h) - \beta_j(y_0)| \leq \delta$ for all $h \geq 1$. Fix $t \in [1/2, 1]$. Since γ is continuous there exists u such that for any $h \geq 1$

$$
\gamma_{y_h}^j(t') \in B(\eta_u, 2\varrho_u) \quad \text{for} \quad |t'-t| < \delta.
$$

For each such h there exists then $\xi \in f^{-1}(\eta_u) \cap \overline{B}(2\theta_0 r)$ such that, by (4-20)

$$
|\lambda_{h,\nu}(t')| \subset U(\xi, f, 2\varrho_u) \qquad \text{for} \quad |t'-t| < \delta.
$$

And since $d(U(\xi, f, 2\varrho_u)) < \varepsilon$ for all $h \geq 1$, the family $\{\lambda_{h,\nu}\}_{h \geq 1}$ is equicontinuous. By Ascoli's theorem we may conclude that $\{\lambda_{h,\nu}\}_{h>1}$ converges uniformly to a path λ_{ν} : $[1/2, 1] \rightarrow B(2\theta_0 r)$. The path λ_{ν} is a maximal $f | B(4\theta_0 r + 1)$ -lift of $\gamma_{y_0}^j \, | \, [1/2, 1]$.

Next fix $\nu \in \{m+1,\ldots,g\}$. Let the end-point of $\lambda_{h,\nu}$, in $B(4\theta_0 r+1)$, occur at $t = t_h < 1$ and set $t_0 = \limsup_{h \to \infty} t_h$. We shall construct a maximal $f | B(4\theta_0 r +$ 1)-lift λ_{ν} of $\gamma_{y_0}^j$ | [1/2, 1] with end-point t_0 as follows. By taking subsequences of ${t_h}$ again, we may assume $t_0 = \lim_{h\to\infty} t_h$. As above we conclude that the paths $\lambda_{h,\nu} \circ G_h$, where G_h maps $[1/2, t_0]$ affinely onto $[1/2, t_h)$, converges uniformly on compact subsets of $[1/2, t_0)$ to a path $\tilde{\lambda}_{\nu}$: $[1/2, t_0) \rightarrow \bar{B}(4\theta_0 r + 1)$ which is then a lift of $\gamma_{y_0}^j \mid [1/2, t_0)$. The path has an extension to a path $\bar{\lambda}_{\nu}$: $[1/2, t_0] \rightarrow$ $\bar{B}(4\theta_0 r + 1)$, by [MRV3, 3.12]. If $\Delta \subset [1/2, t_0]$ is the largest interval such that

 $1/2 \in \Delta$ and $\bar{\lambda}_{\nu} \Delta \subset \bar{B}(4\theta_0 r + 1)$, then $\lambda_{\nu} = \bar{\lambda}_{\nu} |\Delta$ is maximal $f | B(4\theta_0 r + 1)$ lift of $\gamma_{y_0}^j \mid [1/2, 1]$, and we have constructed paths $\lambda_1, \ldots, \lambda_g$, each of which is a maximal lift of $\gamma_{y_0}^j \mid [1/2, 1]$. Next we will show that $\Lambda_{y_0} = {\lambda_1, \ldots, \lambda_g} \in \Omega_{y_0};$ i.e. Λ_{y_0} is a maximal sequence of $f | B(4\theta_0 r + 1)$ -liftings of $\gamma_{y_0}^j | [1/2, 1]$, as defined in [R1]. We need only check that

$$
card\{ \nu : \lambda_{\nu}(t) = x \} \le i(x, f) \quad \text{for all } t \text{ and } x.
$$

Let $A = \{v : \lambda_v(t) = x\} \neq \emptyset$, and let $U(x, f, \rho)$ be normal neighbourhood of x. There exists h_0 such that $|\lambda_{h,\nu}| \cap U \neq \emptyset$ for all $h \geq h_0$, $\nu \in A$. Let $h \geq h_0$. We may easily find a point $\eta = \gamma_{y_h}^j(t')$ in $\bigcap_{\nu \in A} \{f(|\lambda_{h,\nu}| \cap U)\}\.$ Let ξ_1, \ldots, ξ_w be the points in $\{\lambda_{h,\nu}(t') : \nu \in \tilde{A}\}\subset f^{-1}(\eta) \cap U$. Since $\{\lambda_{h,1},\ldots,\lambda_{h,g}\}\$ is a maximal sequence, we have for $u = 1, \ldots, w$,

$$
\theta_u = \text{card} \{ u : \lambda_{h,\nu}(t') = \xi_u \} \leq i(\xi_u, f).
$$

Further, by the choice of η and since U is a normal neighbourhood of x,

card
$$
A = \sum_{u=1}^{w} \theta_u \le \sum_{u=1}^{w} i(\xi_u, f) \le n(U, \eta) = n(U, x) = i(x, f),
$$

where the last inequality is true because $f^{-1}(f(x)) \cap U = \{x\}$. This proves that $\Lambda_{y_0} = {\lambda_1, \ldots, \lambda_q}$ obtained above is a maximal sequence of $f | B(4\theta_0 r + 1)$ liftings of $\gamma_{y_0}^j | [1/2, 1]$, such that $|\lambda_{\nu}| \subset \overline{B}(2\theta_0 r)$ for $1 \le \nu \le m$. Thus $p_j(y_0) \ge$ $N(\Lambda_{y_0}) = m$. This proves the lemma.

Set

(4-21)
$$
q_j(y) = n(\theta_0 r, \alpha_j(y)) - p_j(y).
$$

 q_j , being the difference of two measurable functions, is measurable relative to S' . With $\hat{\Lambda}_y^j$ such that $p_j(y) = N(\hat{\Lambda}_y^j)$, for $k = 1, 2, \ldots$, let

$$
E_k^j = \{ y \in S' : q_j(y) = k \}, \qquad E_k^{j'} = \{ y + a_j : y \in E_k^j \}
$$

\n
$$
\Gamma_k^j = \{ \gamma_y^j | [1/2, 1] : y \in E_k^j \}
$$

\n
$$
\Delta_k^j = \{ \lambda_\nu : \lambda_\nu \in \hat{\Lambda}_y^j, y \in E_k^j, |\lambda_\nu| \nsubseteq \bar{B}(2\theta_0 r) \}.
$$

Then $\mathscr{H}^{n-1}(E_k^j)$ $\mathscr{H}^{n-1}(E^j_k)$ k $'$ and by the definition of E_k^j $\frac{d}{k}$ and the fact that $\mathscr{H}^{n-1}(S \setminus S') = 0$, we have

(4-22)

$$
\frac{1}{\omega_{n-1}} \int_{S} q_j(y) d\mathcal{H}^{n-1}(y) = \frac{1}{\omega_{n-1}} \sum_{k=1}^{\infty} k \mathcal{H}^{n-1}(E_k^j)
$$

$$
= \frac{1}{\omega_{n-1}} \sum_{k=1}^{\infty} k \mathcal{H}^{n-1}(E_k^j').
$$

We get $\mathscr{H}^{n-1}(E_k^j)$ k $\mathcal{L}' = (\log(\sigma_2/\sigma_1))^{n-1} M(\Gamma_k^j)$ using a standard estimate, [V1, 7.7]. Thus (4-22) becomes

$$
\frac{1}{\omega_{n-1}} \int_S q_j(y) d\mathcal{H}^{n-1}(y) = \frac{1}{\omega_{n-1}} \sum_{k=1}^{\infty} k M(\Gamma_k^j) (\log(\sigma_2/\sigma_1))^{n-1}
$$

$$
= \frac{1}{\omega_{n-1}} (\log(\sigma_2/\sigma_1))^{n-1} \sum_{k=1}^{\infty} k M(\Gamma_k^j).
$$

Further, Väisälä's inequality [V2, 3.1] gives us $kM(\Gamma_k^j) \leq K_I M(\Delta_k^j)$. Also note that since the $\{\Gamma_k^j\}$ $\{k\}_{j,k}$ are disjoint, so are the $\{\Delta_k^j\}$ $\{k\}_{j,k}$, and by [V1, 6.7],

$$
\sum_{\stackrel{b_j=1}{j\neq J}}^q \sum_{k=1}^\infty M\big(\Delta_k^j \big)\leq M\Big(\textstyle\bigcup_{\stackrel{j=1}{j\neq J}}^q \textstyle\bigcup_{k=1}^\infty \Delta_k^j \Big).
$$

Using these two estimates, summing over $j \neq J$ and recalling σ_1 from (4-6) we get

$$
\sum_{j \neq J} \frac{1}{\omega_{n-1}} \int_{S} q_j(y) d\mathcal{H}^{n-1}(y) \leq \frac{1}{\omega_{n-1}} \left(\log(\sigma_2/\sigma_1) \right)^{n-1} K_I M \left(\bigcup_{\substack{j=1 \ j \neq J}}^{q} \bigcup_{k=1}^{\infty} \Delta_k^j \right)
$$
\n
$$
\leq \frac{1}{\omega_{n-1}} \left(\log(\sigma_2/\sigma_1) \right)^{n-1} K_I \frac{\omega_{n-1}}{\left(\log(2)^{n-1} \right)}
$$
\n
$$
\leq \frac{K_I}{(\log 2)^{n-1}} b\nu(2\theta_0 r).
$$

If $y \in S$, then by (4-14), (4-21) and (4-18) we have

(4-24)
$$
n(r, a_j) \le q_j(y) + n(2\theta_0 r, \beta_j(y)).
$$

On integrating over S, and summing over $j \neq J$, we obtain using (4-23),

(4-25)
$$
\sum_{j \neq J} n(r, a_j) \leq \frac{K_I b \nu (2\theta_0 r)}{(\log 2)^{n-1}} + \sum_{j \neq J} \nu (2\theta_0 r, S(a_j, \sigma_2)).
$$

But from $(2-3)$ and $(4-8)$

$$
\nu(2\theta_0 r, S(a_j, \sigma_2)) \leq \nu(4\theta_0 r) + c_1 (b\nu(2\theta_0 r))^{1-1/n}.
$$

Using this (4-25) becomes

$$
\sum_{j \neq J} n(r, a_j) \le \frac{K_I b}{(\log 2)^{n-1}} \nu(2\theta_0 r) + (q-1)\nu(4\theta_0 r) + (q-1)c_1 \big(b\nu(2\theta_0 r)\big)^{1-1/n}.
$$

Finally we use $(4-5)$ (v) in the above inequality to get

$$
\sum_{j \neq J} n(r, a_j) \le \frac{K_I b}{(\log 2)^{n-1}} \nu(2\theta_0 r) + (q - 1)\nu(4\theta_0 r) + \nu(2\theta_0 r)
$$

$$
\le \left[q + \frac{K_I b}{(\log 2)^{n-1}} \right] \nu(4\theta_0 r).
$$

In the situation when $\tau > 1$ this gives us

$$
\sum_{j \neq J} n(r, a_j) \leq \left[q + \frac{K_I b}{(\log 2)^{n-1}} \right] \nu(4\theta_0 r, \tau).
$$

Step III: Recall $r_0 = \max(r_1, r_2)$. Fix $r \ge r_0$, and use (2-2) to replace $\nu(4\theta_0 r, \tau)$ by $\nu(8\theta_0 r)$ to get,

$$
\sum_{j\neq J} n(r, a_j) \leq \left[q + \frac{K_I b}{(\log 2)^{n-1}} \right] \left(\nu(8\theta_0 r) + K_I \left(\frac{\log \tau}{\log 2} \right)^{n-1} \right).
$$

The inequality (4-4) (i) reduces this to

$$
\sum_{j \neq J} n(r, a_j) \le \left[q + \frac{2K_I b}{(\log 2)^{n-1}} \right] \nu(8\theta_0 r),
$$

and by $(4-4)$ (ii) we obtain,

$$
\sum_{j \neq J} n(r, a_j) \leq \left[q + \frac{4K_I b}{(\log 2)^{n-1}} + 2 \right] A(16\theta_0 r).
$$

This proves Theorem 4-1.

Theorem 4-26. For $n \geq 2$, and $K \geq 1$, let $f: \mathbb{R}^n \to \overline{\mathbb{R}}^n$ be a nonconstant K-qm function. Then there exist constants $C_1 = C_1(n, K) > 1$, $\theta_1 = \theta_1(n, K) > 1$ such that for every $a_1, \ldots, a_q \in \mathbb{R}^n$, $q > 1$, there exists a set $E \subset [1,\infty)$ with $\int_E d\lambda/\lambda = \infty$ such that

(4-27)
$$
\limsup_{\substack{r \to \infty \\ r \in E}} \sum_{j=1}^{q} \left[\frac{n(r, a_j)}{A(\theta_1 r)} - 1 \right]_+ \leq C_1.
$$

Proof of Theorem 4-26. We first use Theorem 3-1 with some fixed value of C, say $C = 2$, and obtain a corresponding θ and a set $E \subset [1,\infty)$ with $\int_E d\lambda/\lambda = \infty$, such that for $j = 1, \ldots, q, r \in E$,

$$
(4-28) \t n(r, a_j) \le 2A(\theta r).
$$

We will then show that (4-27) holds with

$$
\theta_1 = \max(16\theta_0, \theta),
$$
 $C_1 = 4 + \frac{4K_Ib}{(\log 2)^{n-1}}$

where b has been defined in (4-3). As in Theorem 4-1, we assume that $a_1, \ldots, a_q \in$ $B(\tau/2)$ and $\sigma > 0$ such that $B_{\sigma\tau}(a_j) \subset B(\tau/2)$ and $\bar{B}_{\sigma\tau}(a_j)$ are disjoint.

Now apply Theorem 4-1 and obtain $r_0 = r_0(\sigma, \tau, q, f) > 0$. Fix $r \in E$ such that $r \ge r_0$. If $((n(r, a_j)/A(\theta_1 r))-1) \le 0$ for $(q-1)$ values of j, then by (4-28) there is nothing to prove. So let $Q = \{1 \leq j \leq q : ((n(r, a_j)/A(\theta_1 r)) - 1) > 0\}$ for all $j \in Q$. We assume card $Q = q' \geq 2$.

Again we apply Theorem 4-1, to the same function f , but using the set ${a_j : j \in Q} = {a'_j}.$ Note that the same σ and τ , as for the ${a_j}$, work for ${a'_j}$. Theorem 4-1 yields $r'_0 = r'_0(\sigma, \tau, q', f)$. From (4-4) and (4-5) (v) we see that we may choose $r'_0(\sigma, \tau, q', f) = r_0(\sigma, \tau, q, f)$; i.e. $r'_0 = r_0$. So we have for $r \in E$, $r \ge r_0 = r'_0$, by (4-2),

$$
\sum_{\substack{j\in Q\\j\neq J}} n(r, a_j) \le \left[q' + \frac{4K_I b}{(\log 2)^{n-1}} + 2 \right] A(16\theta_0 r) \le \left[q' + \frac{4K_I b}{(\log 2)^{n-1}} + 2 \right] A(\theta_1 r);
$$

i.e.,

$$
\sum_{\substack{j\in Q\\j\neq J}}\Bigl[\frac{n(r,a_j)}{A(\theta_1r)}-1\Bigr]\leq \Bigl[3+\frac{4K_Ib}{(\log 2)^{n-1}}\Bigr].
$$

For $j = J$, since $r \in E$, we have from (4-28) that

$$
n(r, a_J) \le 2A(\theta r) \le 2A(\theta_1 r).
$$

Hence

$$
\sum_{j\in Q} \left[\frac{n(r,a_j)}{A(\theta_1 r)} - 1\right] \le \left[4 + \frac{4K_I b}{(\log 2)^{n-1}}\right] = C_1.
$$

And by the definition of Q,

$$
\sum_{j=1}^{q} \left[\frac{n(r, a_j)}{A(\theta_1 r)} - 1 \right]_+ \leq C_1,
$$

where $r \in E$, $r \ge r_0$. The theorem is proved.

References

- [Mi] MILES, J.: Bounds on the ratio $n(r, a)/S(r)$ for meromorphic functions. Trans. Amer. Math. Soc. 162, 1971 , 383–393.
- [MR] Martio, O., and S. Rickman: Measure properties of the branch set and its image of quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A I Math. 541, 1973, 1–16.
- [MRV1] MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 448, 1969, 1–40.
- [MRV2] MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Distortion and singularities of quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A I Math, 465, 1970, 1–13.
- [MRV3] MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Topological and metric properties of quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A I Math. 488, 1971, 1–31.
- [MS] MARTIO, O., and U. SREBRO: Periodic quasimeromorphic mappings in \mathbb{R}^n . J. Analyse Math. 28, 1975, 20–40.
- [R1] Rickman, S.: On the value distribution of quasimeromorphic maps. Ann. Acad. Sci. Fenn. Ser. A I Math. 2, 1976, 447–466.
- [R2] Rickman, S.: On the number of omitted values of entire quasiregular mappings. J. Analyse Math. 37, 1980, 100–117.
- [R3] Rickman, S.: Value distribution of quasiregular mappings. In Proceedings of the Conference on Value Distribution Theory, Joensuu. Lecture Notes in Math. 981, Springer– Verlag, 1981, 220–245.
- [R4] Rickman, S.: A defect relation for quasimeromorphic mappings. Ann. of Math. 114, 1981, 165–191.
- [R5] Rickman, S.: Quasiregular mappings. Ergeb. Math. Grenzgeb. (to appear).
- [R6] Rickman, S.: Defect relation and its realization for quasiregular mappings. Preprint, year?
- [V1] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Math. 229, Springer Verlag, 1971.
- [V2] VÄISÄLÄ, J.: Modulus and capacity inequalities for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 509, 1972, 1–14.
- [Vu] Vuorinen, M.: Conformal geometry and quasiregular mappings. Lecture Notes in Math. 1319, Springer–Verlag, 1988.

Received 28 April 1993