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Abstract. Let f: R® — R"™ be a nonconstant K -quasimeromorphic map. We prove
first that given C' > 1, there exists 8 > 1, 6 depending only on n, K, C, such that when-
ever ai,...,a; € R" are distinct, we have n(r,a;) < CA(fr) for j = 1,...,q and r € E,
where E = E(f,a1,...,aq) has infinite logarithmic measure. This result is then used to obtain
the following converse to the defect relation as established by S. Rickman. Let f: R* — R”
be a nonconstant K -quasimeromorphic map. Then there exist constants C; > 1 and 67 >
1, depending only on n and K such that for ai,...,a, € R"™ any distinct points, we have
lim Supr—so >i—1((n(r,a;))/(A(617)) = 1)4 < C1 where E can be taken to be the same set as

above. Any improvement or enlargement of the set E for the first result is immediately valid for
the second (main) result.

1. Introduction

Quasiregular (and quasimeromorphic) mappings form a natural generaliza-
tion of analytic (and meromorphic) maps to real n-dimensions. We abbreviate
these classes as qr and gm. These functions retain some of the most important
topological properties of analytic functions. A study of the value distribution the-
ory of such maps has been a subject of interest for many years. For an overview
of results in this area we refer to [R2].

Rickman has shown [R3] that a weak form of Picard’s theorem holds for
these mappings. Moreover in [R2], [R6] he proved that for a nonconstant, real
n-dimensional, n > 3, K-gm function f, there exists a set E C [1, 00) of finite
logarithmic measure, and a constant C(n, K) < oo, depending only on n and K
such that

: n(r,a;)
lim su (1—%‘7> <C(n,K),
msup > A )y SO K)
r¢E J=1
where aq,...,a, are distinct points. For n = 3 this is qualitatively sharp, as can

be seen from [R6, Theorem 1.7]. Thus Nevannlinna’s defect relation generalizes in
qualitative form to ¢gm maps.
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In this paper, we consider a converse inequality. For a nonconstant mero-
morphic function f in the plane, it was shown by J. Miles [Mi] that there exist
absolute constants K < oo and C € (0,1) and a set £ = E(f) C [1,00) having
lower logarithmic density at least C' such that if ay,...,a, are distinct elements
of the Riemann sphere, then

q
_ n(r,a;)
lim su ( -7 —1) <K.
o) (T U, =
rekE j=1

Here we extend the above result, for meromorphic functions in the plane, to
gm maps and all dimensions.

The proof breaks up into two parts: Sections 3 and Section 4. In Section 3
we show that n(r,a;) < CA(r) for any given ¢ points ai,...,a, and r taking
values in a set E of infinite logarithmic measure. This is an extension of [R1,
5.16], where the case ¢ = 1 is considered. The proof is a slight modification of
the proof of the same. In Section 4 we first obtain an estimate which holds for all
except possibly one value a;. This estimate holds without the exceptional r-set,
but the a; chosen as exception does depend upon r. For such an a; we then use
the bound obtained in Theorem 3-1. An important open problem is to get a result
such as Theorem 3-1 off an exceptional set which does not depend on a. The main
analytic tool is path families, a natural generalization to space of extremal length.

I thank Professor David Drasin for suggesting this problem to me, as part of
my thesis, and also for his constant encouragement and guidance.

2. Notation and definitions
We denote by R™ the real euclidean n-space, and by R" the one-point
compactification R™ = R"™ U {oo}. Set
By(x)={yeR": |z —y|<r}, Sz,r)=0B(z),
B(r) = B,(0), S(r)=5(0,r), and S=S5(1).
The Lebesgue measure in R is denoted by " and the normalized k-dimensional
Hausdorff measure in R™ by #%. We set w, 1 = " 1(S). The Euclidean

metric in R" is d. If v: A — R" is a path, we denote its locus YA by |v|.
R" is equipped with the spherical metric,

dlz,y] = |z —yl/[(A+[2) A+ Y]V 2y # oo
dlz,00] = 1/(1 + |2]?) /2.

Definition. Let n > 2, and let G be a domain in R™. A continuous mapping
f: G — R™ is called quasiregular if (1) f is in the local Sobolev space Wé’loc(G);
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i.e., f has distributional partial derivatives which are locally L™-integrable, and
(2) there exists a constant K, 1 < K < oo, such that

(2-1) ()" < K Jg(x)

holds for almost every x € G. Here |f’(x)] is the sup norm of the formal derivative
f'(x) defined by means of partial derivatives and J¢(x) is the Jacobian determi-
nant of f at z. The smallest K in (2-1) is the outer dilatation Ko(f), and the
smallest K,1 < K < oo, for which

Ji(x) < K |fib?f1 |f/(x)h|" a.e.

holds is the inner dilatation K;(f) of f. K(f) = max(Ko(f),K;(f)) is the
maximal dilatation of f. If f is quasiregular and K(f) < K, it is called K-
quasiregular.

Let G € R™ be a domain. A mapping f: G — R™ is called quasimeromorphic
if either fG = {oo} or the set F = f~1(c0) is discrete and fi = f|G\ (F U {co})
is quasiregular. We set K(f) = K(f1), Ko(f) = Ko(f1), and K;(f) = Ki(f1).

For a definition of the modulus of a family of curves we refer to [Vu].

If f:R* — R” is nonconstant and g¢m, the counting function n(r,y) is
defined for » > 0, y € R", by

ny)= S e, ),

z€f~1(y)NB(r)

where i(z, f) is the local topological index; see [MRV1].

A(r) is the average of n(r,y) over R" with respect to the spherical metric.
If r,t >0, V(T, S(a,t)) is the average of the counting function over the sphere
S(a,t) with respect to "1,

1
/ n(r,a + ty) A" (y),
Wn—1 S

o n(r,y)
a0 = [ w

l/(?“, S(a,t)) =

In particular, when S(a,t) = S(t), we set v(r,S(t)) = v(r,t), and also v(r,1) =
v(r).

Let f: G — R™ be ¢gm. A domain D such that D C G is called a normal
domain if fOoD = 0fD. If x € G and U is a normal domain such that U N
f_l(f(:v)) = {x}, then U is called a normal neighbourhood of x. By [MRVI,
2.10], every point in G has arbitrarily small normal neighbourhoods.
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We repeatedly use the following result [R4, p. 228, 2.1]. If # > 1 and r,s,t >
0, then

Ki|log(t/s)[""
(log )"~

(2-2) v(fr,t) > v(r,s) —

We also need a comparison between averages on non-concentric spheres, S
and S(a,t) C B(1/2), for t small enough, say ¢t < 1/4. This can be obtained by
applying the above result to the map ¢ o f, where ¢ is a quasiconformal map of
R" onto R™, which is the translation x — x — a in Bi(a) and it is the identity
map outside B(1). ¢ can be taken to be 4-bilipschitz. Thus we get,

(2-3) v(r,S(a,t)) < v(2r) + e (log(1/6)"
where we may take c¢; = 42" 72K /(log2)" !, since ¢ is 42" ~2-quasiconformal.

3. An upper bound on n(r,a)/A(0r)

Theorem 3-1. Let f: R® — R"™ be a nonconstant K -quasimeromorphic
map. Then for each C > 1, there exists § > 1, § = 6(C,n,K), such that
for every ai,...,a, € R", there exists a set E = E(ay,...,a,) C [1,00), with
[ AN/ X = oo, such that

(3-2) n(r,a;) < CA(Or) forj=1,...q, rek.

Note that here the role of E is different from that in [R4]. We begin with an
adaptation of [R1, 5.4] to the case that a # 0. It is a quantification of the fact
that a nonconstant ¢gm map is light.

Lemma 3-3. Let f: R® — R" be a nonconstant K -quasimeromorphic map.
Choose 1 <u<w,t>0 and r > 0. Let a € R" be given. Set

(3-4) Hy (r,t) ={XN€[ryur]: SN N fH(Bla)) #0},
d\
a (T, 1) = —.
Ga,f(r;1) /Ha’f(m) 3
Then,
2wn—1KIKO
(3-5) v(vr,S(a,t)) > {1 ot (D (log v u) n(r,a)

where ¢, > 0 is the constant in [V1, 10.11] which depends only on n.
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Proof. Using (2-2), we may obtain [R1, 5.5] without the constant ¢, as

2K Kown—1
(3-6) v(or,t) > |1 — erd(r. 1) (log v/u)—1 n(r,0).

Let g(z) = f(z) —a. Then vy(vr,t) = vy (vr, S a,t)) and ny(r,0) = ng(r,a). Let
¢ = w—a, so that g(z) = Cof(z), and also S(\ 1( (t)°) = S)NFH(Bi(a)e).
Hence Hy 4(r,t) = Hgq ¢(r,t) and ¢o,4(r,t) = ¢q,7(r,t). Now (3-6) applied to g
gives (3-5).

Proof of Theorem 3-1. We divide the proof into three steps. The second step
proves the theorem under the normalization ai,...,a, € B(1/2). The first and

third steps are merely to facilitate this normalization.

Step I: Let C' > 1 be given. Let ay,...a, € R". By a rotation of the sphere

we may assume that ai,...,a, € B(7/2) for some 7 > 1. Let o > 0 be such that
the balls {Bs-(a;)} are disjoint and {By,(a;)} C B(7/2) for all j. We claim that
for given ro > 0, there exists r; > 7o such that for all € [ry, u'/*r],

(3-7) n(r,a;) < CA(Or) for j=1,...,q,

where u > 1 is defined in (3-11). By repeating this argument, we obtain our set
E = U2, [rs,u**r;], so that E has infinite logarithmic measure. We may assume
that n(rg,a;) > 1 for all j, since the j’s for which n(r,a;) = 0 for all r satisfy
the claim. Let

(3-8) C'=CY > 1.
By [R1, 4.10] we choose rq so that for r > rq,
(3-9) v(r) < C"A(2r).

We assume oo is an essential singularity (i.e. f has no limit in R™ as we approach
o0 ), for otherwise f extends to R™ as a ¢gm map and it has finite degree [MRV2],
[MS]. By [R1, 3.1] we then have that A(r) — co. So we may choose 1y such that
for r > rg

log T

(310) K )n_1+-CQqOog§)n_l<(CV4—(73er)

log 2
Step II: In this step we replace f by f/7 and a1,...,aq by ai/7,...,a4/T.

However, for convenience of notation, we still call them f and ay,...,a,. Note

that we are now in the situation ay,...,a, € B(1/2), {B,(a;)} disjoint and each

B,(aj;) C B(1/2). In order to apply Lemma 3-3 we define v > 1 by

1 4wn_1KoK1

11 1
(3-11) C’ cn(log u)n
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where ¢, > 0 is as in [V1, 10.11].
For u > 1, as above and ¢,7 > 0, let ¢;(r,t) = ¢q, ¢(r,t) be as in Lemma 3-3,
and let

(3-12) U(t) = sup min ¢;(r, t).

Then W is decreasing in t.

Case (i): ¥(o) > (7/8)logu.

Then, by the definition of ¥(o), there exists r; > rg such that min; ¢;(r1, o)
> (3/4)logu; i.e.
(3-13) ¢j(ri,0) = (3/4)logu,  1<j<q.

From the definition of ¢;(r1,0), we note that

b:(r1,0) / d\ / d\ n / X
(1, — - — - -
’ Hj(ry,0) A Hj(r1,0)N[r1,ul/4r] A H;(r1,0)N[ul/%ry,ur] A

< 11 +/ d\
= —~logu —.
4 Hj(r1,0)N[ul/4r,ur] A
From this and (3-13) we obtain for r € [r1,u"/*r,] and for all j =1,...,q,
d\x _ 1
(3-14) ¢j(r,o) > / — > —logu.
H, (r,o)n[ut/Aryur] A 2

1/4

We now apply Lemma 3-3 with a = a;, t =0, r € [r1,u!/*r;], v = u? along with

(3-14) and (3-11) to obtain
2wn_1K]KO
Cn¢j (Ta U) (log U)

[1 _ M}n(r a;)
cn(logu)™ T

V(UT,S(CLj,O'>) > [1_ n_l]n(r7aj>

(3-15)

v

1 :
zan(r,aj) j=1,...,q.

Now using (2-3) with ¢ = o and (3-15), we get for » € [ry,u/*r;] and j =1,...,q,
that

(3-16) n(r,a;) < C'v(vr, S(aj,0)) < C'v(2vr) + C'ei(log1/a)" 1.

Case (ii): ¥(o) < (7/8)logu.
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Since f is discrete, for each fixed r, ¢;(r,t) — logu as t — 0. Let ¢ty =
inf{t: ¢t < o,¥() < (7/8)logu}. One checks that ¢, > 0. We may assume
to < o. Let & be so small that

46 C'—1\1/(n-1)
3-17 0<6<min{ity,oc—ty}, —2 < (log?2 (7>
( ) <6 <min{5tg,0 —to} o < (log2) K,C7
and let
(3-18) t1 =tg — 9, t] =to + 4.

Since W(t1) > %logu, there exists r1 > ro with min; ¢;(r1, 1) > 3 logu; i.e.
¢j(ri,t1) > 3logu,  j=1,...,q.
From this we may conclude, exactly as in Case (i), that for r € [ry,u'/%r],
(3-19) ¢j(r,t1) > 3 logu, j=1,...,q.

Now we apply Lemma 3-3 with 7 € [r1,u'/*r], t = t1, a = a;, v = u?, along
with (3-19) and (3-11), to obtain

2Wn—ll(I[(O
Cn(bj (n tl)(log u)

y(vr, S(aj,tl)) > [1 —

n_l]n(r, a;)

4wn_1K]KO
3-20 > [1 - —} .
(3-20) - cn (log u)™ n(r, a;)
1 .
Z 5”(7"7 aj)a 1 S J S q.

Let to < t < t;. By (3-12), ¥(t) = sup,>,, min; ¢;(r,t) < (7/8)logu, and
since 2vr > r ro, we find for an appropriate 1 < [ < ¢, that ¢;(2vr,t) =
min; ¢;(2vr, t) (7/8)logu. Then by the definition of ¢;(2vr,t) there exists
o € [2vr,2vur] such that S(o) N f~1(Bi(a;)®) = 0. The analysis of [MRV1,
2.5], which is stated only for ¢gr maps but applies as well to gm maps, shows that

every component of f~!(B;(a;)°) which meets B(p) is a normal domain contained
in B(p). Hence

>
<

(3-21) n(o,y) =n(e,2)  forally,z € By(w)".

In particular, since t < t{ < o and the {B(a;j, o)} are disjoint, we have for j # I,
n(o,y) = n(o,a; + t1y) for all y € S. And so on averaging,

(3-22) v(o) =v(o,S(a;,t1))  j#L
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For j = [, since t < t}, we note from (3-21) that n(o,y) = n(e,a; + t}y) for
all y € S. So again on averaging,

(3-23) v(o) = v (o, S(ar,t})).

We now replace v(o, S(a,t})) by v(o,S(a,t1)) with controllable error. Letting
0=2, s=ty, t=1t], r=wvr, we obtain from (2-2) that

K] (10g(t/1/t1>)n_

(320 v(on Sl ) < v(2on Sl ) + =0

Now we find, using (3-18) and (3-17), that

t 20 20 49 C' —1\1/(n-1)
log + =log(1 — < (log?2)(—— :
Ogtl Og( +t0—(5> <t0—5< to <<Og )(KIC’/2>

Hence, from (3-24),
(3-25) v(vr, S(ar, t1)) < v(2or, S(ar, 7)) + (C' — 1)/C".

Since n(r,a;) > n(ro,a;) > 1 as stated in Step I, we have from (3-20) that
v(vr,S(as,t1)) > 1/C’. Substituting this inequality on the right hand side of
(3-25) and unraveling, we obtain,

v(vr, S(ar, t1)) < C'v(2ur, S(a, t))).

But since 2vr < ¢ < 2vur, the last inequality, together with (3-20) and (3-23)
gives for 7 € [ry,u/4ry],
(3-26) n(r,a;) < CIQV( ,S(a, ) = C”v(o).
And again using the fact that 2vr < p along with (3-20) and (3-22), we find for
j# 1L, 7€ fr,ul/r]
(3-27) n(r,a;) < C'v(o,S(aj,t1)) = C'v(0).
Using the inequality 2vr < g, we conclude in both cases, from (3-26), (3-27) and
(3-16) that, for j =1,...,q, r € [r1,u'/*r],
(3-28) n(r,a;) < C"*v(g) + C'cy(log1 /o).

Finally, we recall the change of scale we made in the beginning of Step II, and
conclude from (3-28) that for r € [ry, u'/*ry],

(3-29) n(r,a;) < c”? v(0,7) + C'ci(log /o)™ !
for the original f and ai,...,a,.
Step III: First we use (2-2) to replace v(p,7) by v(20) in (3-29) and get

1 n—1
n(r,a;) < C"v(20) + 0’2K1(10§;> +C'ci(log1/o)"
0
Using (3-9), (3-10) (3-8) and o < 2uvr we now get for r € [ry,u/*r;] and j =

1,....q,

n(r,a;) < CA(40) + (C"" = C°) A(40) < CA(Or),

where § = S8uv = 8u3. This proves the theorem.
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4. The main result

We first prove an intermediate result, i.e., the estimate (4-2). This is an
essential fact needed for the main theorem.

Theorem 4-1. Let n > 2 and K > 1. Thgre exist positive constants
0o = 0o(n,K), b = b(n, K) such that if f: R" — R" is a nonconstant K-gm

map and aq,...,aq € R", are any distinct points, with g > 1, then there exist
ro =ro(ai,...,aq, f) > 0 such that for each r > 1o, we have
z 4K1b
(4—2) jzl n(r, aj) S [q + W —|— 2] A(16907‘),
G (1)

for some J(r) € {1,...,q}. The constants 6y and b are given by

wn—1Koct 2Kown—1
4-3 log 6y = —_— — vymn—2
(4-3) 08 Yo 2n—4c, n cn log 0

with ¢; and ¢, as in (2-3) and (3-5) respectively.

Observe that there is no exceptional set for the r-values here. However, the
estimate obtained is close to what we want, save for one aj(,y. For this a;.) we
use Theorem 3-1. We thus obtain our main result, Theorem 4-26, on the same
exceptional set of r-values as that obtained in Theorem 3-1. It is worth noting
that any enlargement or improvement of the set E of Theorem 3-1, is also valid
for Theorem 4-26.

Proof of Theorem 4-1. Again we divide the proof into three steps with main
body of the proof being in the second step.

Step I. We may assume, as in the proof of Theorem 3-1, that oo is an es-
sential singularity, so that A(r) — oo as r — oco. By a rotation we assume that
ai,...,aq € R". Let 7> 1 and ¢ > 0 be such that B,.(a;) C B(7/2), and the
{Bm(aj)} are disjoint. We set 7o = max(ry,r3), where r; and 7o are obtained
below. Choose 1 = r1(7,q, f) > 0 such that for r > rq,

, Kb log 7 n—1 Kb
P g (=2 < 7
(i) [q + (log 2)”—1] I(log?) ~ (log2)n—1 v(r)

(i) v(r) < q%’lA(Qr) by [R1, 4.10].

(4-4)

Step II: Again by replacing f by f/7 we reduce to the case 7 = 1. Since
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v(r) — oo as r — 00, we can choose ry = r2(0, q, f) > 0 such that for r > rq,

(i) [bv(200m)]"™ + 1 < [2bw(2007)]/™,

(i) log2 < (by(QGOT))l/(n_l) — (bw(2607)) 1™,
! < 2t/

1+ (log(0/2))/ (bv(264r)) "~

(iv) 2exp (—%(bV(QQ()T))l/n) < o,

(v) c1gb < (bv(200r )1/n.

(4-5) (iii)

b

Fix r > ry. Since f is gm , #"(0B(6pr)) = 0 implies 5" (f(dB(6or))) =0, by
[Vu, 10.5(3)]. From this and Fubini’s theorem it follows that #™~(f(9B(for)) N
S(aj,01)) =0 for a.c.

o1 € [exp{_(by(2007“>)1/(n_1)},2€Xp {—(bV(QQ()T))l/(n_l)}],

for each j =1,...,¢q. Hence there exists ¢, € [1,2] such that for

(4-6) o1 = eroxp {—(br(200r)) /"

(4-7) A" (f(8B(6or)) NS(aj,01)) =0 forall j =1,...,q.

Then by (4-6) and (4-5) (ii) we have
(4-8) o1 < 2exp {—(bV(QQOT))l/(n_l)} < exp {—(by(200r))1/n} =0y

and by (4-5) (iv),
09 = exp {—(bl/(200r))1/n} <.

Let a; and §; be the maps of S onto S(a;,01) and S(a;,02) respectively given
by a;(y) = a; + 01y, Bi(y) = aj + o2y.

For y € S, let 77: [0,1] — R™ be the line segment joining a; to 3;(y),
parametrized so that vj: [0,1/2] joins a; to a;(y) € S(a;,01), gyj: [1/2,1] joins
a;(y) to Bi(y) € S(aj,02).

Comparison of n(r,a;) with n(for,a;(y)): Let f|X denote f restricted to
X and let A} = {A1,..., A\p} be a maximal sequence of f | B(40r + 1)-liftings
of 771[0,1/2] starting at points of f~'(a;) N B(r), as defined in [R1]. Then
necessarily h = n(r,a;). The following crucial lemma has been inspired by the
proof of [R2, 3.2].
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Lemma 4-9. The family of curves

Fi = Uyeshy
lies completely in B(6yr), except perhaps for one j = J(r) € {1,...,q}.

Proof. Note that by definition, all paths in .#; start at preimages of a; in
B(r). We prove the lemma by contradiction. Suppose there exist j # k and
n; € Fj, n € Fi, such that n;, nx € B(6pr). Let T be the family of paths in
B(6or) \ B(r) joining the loci |n;| and |ng|. Note that |f(n;)| and |f(n)| are
line segments starting at a; and a, and contained in B(aj,o1) and B(ax,o1)

respectively. Hence each path in fI' contains sub-paths which join S(a;,o1) to
S(aj,o) and S(ag,o0) to S(ax,o1). Set

(2log(o/o)|z —a;|) ", o1 <|z—a;| <o
o(z) = (210g(0/01)\2—ak\)_1, o1 <l|z—ax| <o
0, otherwise.

Then p is well-defined by the choice of o. Also, ¢ is admissible for the family
fT', and by [MRV1, 3.2] we obtain

M) < KO/ 0(2)"n(Ogr, z) dL"(2)

_ Ko /
(2log(a/01))" Jio1<|z—as1<0}
K
+ & - / n(bor, z)|z — ax| " dL"(2)
(21og(0/01))" Jior<|z—arl<o?
(4-10) =I+1I.

n(bor, 2)|z — a;| 7" dL"(2)

We obtain an estimate for I. Exactly the same estimate holds for I as well. By
transfering the integral of (4-10) into polar coordinates, we find that,

I= KO(2log 0/01 / / (Bor,aj + Ty)dIA"™ 1( )T “ldr

= Kowy,—1(2log(a /1)) " / v(6or, S(a;, 7)) dr.

Using (2-3), with 6 = 6,
Kown—1
~ (2log 0/01
Kown—1

~ (2log(o/01))
< Kown_l

/ {v(2007r) + c1(log(1/7))"" } ~Ldr

(4-11) —(log(lfl)) }

- [y(290r) log(o/o1) + 1

v(200r) log1/04
2n {(log(a/aol))n_1 T <1020/01) }
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Now using (4-6), the fact that e; € [1,2], and (4-5) (iii), we find that

log(1/a1) _ log(1/er) + (bw(205r)) """
log(o/o1) logo + log(1/e1) + (by(290T>)1/<n_1)
(4-12) < (by(gg()r))l/(n—l)
~ logo +1log(1/2) + (by<290r))1/(n—1)

1
- D = 21/,
1+ (logo/2)/(bv(260r))

Also, since €1 < 2, (4-6) and (4-5) (iv) yield that

g - 2 exp{—% (by(2007"))1/n}

IS exp{ L (b(260r)) "V,
91 €1exp{_(by(290r))1/(n 1)} {z( or)) }

and hence

n—1 b (20
) >7y( OT).

ag
(4-13) (1og 7 T

01

Substituting (4-12) and (4-13) into (4-11) we get

<
b + nl— 2b 2n—1lp

[ < Kow 12_n[2n_1 201} Kown1  wn 1Ko

The same estimate holds for I1. Substituting these and the value of b from (4-3)
into (4-10) we obtain

M(T) < Kown1 | wn1Kocr  cnlogly  wn1Koc
- b 2n—2p 2 2n—2p

Further by [V1, (10.12)], M(T") > ¢, log 6y so that

cn log 0y < wn—1Kocy
2 - 2n—2p

But this contradicts our choice of 6y in (4-3). This proves the lemma.

From this lemma, we find that for j # J(r), #; C B(fr). If J(r) does
not exist, so that .#; C B(fyr) for all j, we then set J(r) = ¢. Fix j # J, and
y€S. Then AJ ={\i,..., \} C B(bpr), and since AJ is a maximal sequence of
f| B(46or 4 1) lifts of 47 [[0,1/2] we have , for all j #J, y € S,

(4-14) h =n(r,a;) < n(for, a;(y)).
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Now set
(4—15) Aj = S(CL]', 0'1) N {f(Bf N 3(8907‘)) U f(@B(Gor))}

where By is the branch set, i.e. the set of points where f is not a local homeo-
morphism. From [MR, 3.1] we note that for all j =1,...,q,

%n_l (S(CLj,O’l) N f(Bf N B(800T>)) =0.
This along with (

4
%n—l (Oéj_l(Aj))
Set

-7) implies that s#"~1(A;) =0 for all j. Further, we have that
=0 for all j.

(4-16) §' =5\ Uiy (4))].

Comparison of n(@or, ozj(y)) with n(290r, ﬂj(y)) For any y € S, we rede-
fine AJ = {\1,..., Ay} to be a maximal sequence of f|B(46yr + 1)-liftings of
v [1/2,1], starting at points of f~'(a;(y)) N B(for), where g = n(bor, a;(y)).
Let the set of such sequences be 2. For A € (2] we set

N(Ai) =card {v:|\,| C B(20p7)}
and define

(4-17) p;i(y) = sup N(A)).
AL EQ

Fix an extremal sequence ]A\?JJ €Qie N (f\%) = p,(y). Then by the definition of
a maximal sequence of f-liftings, we have,

(4-18) p;i(y) < n(2007, B;(y)).

We shall integrate n(Qor, a; (y)) —p;(y) on S and for this we need the following
lemma, which is almost entirely an imitation of [R4, 4.1].

Lemma 4-19. Let S’ and p; be as in (4-16) and (4-17), then p; is upper
semi-continuous on S’.

Proof. Let yo € S', then by (4-16) and (4-15), a;(yo) ¢ f(By N B(86yr)) U
f(0B(0or)). Soif f~H(ay(yo)) NB(bor) = {z1,..., x4}, with g = n(bor, a;(vo))
then {x1,...,24} C B(6yr). Let y1, 92, ... be asequence in S’ such that y, — yo.
The lemma asserts that

lim sup p;(yn) < p;(yo)-

h—o0
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By choosing a subsequence we may assume that for some integer m, p;(yn) = m
holds for all A~ > 1. Also n(&or, aj(y)) is upper semi-continuous in y because
n(r,y) is. Hence if g5 = n(for, a;(ys)), then limsup,_ .. gr < g. We choose and
fix the following:

(i) Normal neighbourhoods Vi,...,V, C B(fyr) of the points z1,...,z,, re-
spectively, such that a;(yn) € ()_; f(Vi,), h > 1. (This then implies f~*(a;(yn))
NV, # 0 for all v, so that g, > g;ie gn=g.)

(ii) For each h > 1 a maximal sequence A‘z]/h = { A1, Angt € Qih such
that A, starts at a point (p, in f~1 (aj(yh)) NV, forv=1,...,g9,and |\, .| C
B(26pr) for v =1,...,m (since p;(yn) =m).

We divide the v’s, 1 < v < g, into two groups. First let v € {1,...,m}
be fixed. We claim that the family {A,, : h = 1,2,...} is equicontinuous on
1/2 <t < 1. Indeed, choose ¢ > 0. For t € [1/2,1] there exists 6; > 0 such
that U(&, f,0) is a normal neighbourhood of ¢ with d(U(&, f,0)) < e for each

e f_l(fygo(t)) N B(20yr), and
(4-20) B(200m) N fH(B(73, (1), 0)) CUAU(E fr0) : €€ f7H (75, (1) N B(2607) }

whenever 0 < ¢ < 6. We cover 7/ ([1/2,1]) with a finite number of balls
B(fyio (t),0:/2), say B(ny,o04),u = 1,...,v. Again by taking a subsequence of
the {yn} we have vj, ([1/2,1]) C U,—y B(u, 0u), and |a;(yn) — a;(yo)| < 6 =
ming <y <y{0u/8}, |8 (yn) — Bj(yo)| <6 for all h > 1. Fix ¢t € [1/2,1]. Since 7 is
continuous there exists u such that for any h > 1

v], ') € B(nu, 204) for |t' —t| <é.
For each such h there exists then & € f~%(n,) N B(20gr) such that, by (4-20)
Anp () CUE, f.200)  for [t/ —t] <0

And since d(U(&, f,204)) < € for all h > 1, the family {\,,}r>1 is equicontin-
uous. By Ascoli’s theorem we may conclude that {\p ,},>1 converges uniformly
to a path \,: [1/2,1] — B(20or). The path ), is a maximal f|B(46yr + 1)-lift
of ~J [[1/2,1].

Next fix v € {m+1,...,g}. Let the end-point of A, , , in B(46pr+1), occur at
t =tp, <1 and set ty = limsup;,_,, tn. We shall construct a maximal f | B(46yr+
1)-lift X, of vJ |[1/2,1] with end-point ¢, as follows. By taking subsequences of
{tn} again, we may assume tg = limp,_, t5. As above we conclude that the paths
Ahv © Gp,, where Gj, maps [1/2,tg) affinely onto [1/2,¢)), converges uniformly
on compact subsets of [1/2,%9) to a path \,: [1/2,t)) — B(46pr + 1) which is
then a lift of 4] |[1/2,t0). The path has an extension to a path X,: [1/2,to] —
B(46gr + 1), by [MRV3, 3.12]. If A C [1/2,to] is the largest interval such that
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1/2 € A and A\, A C B(46pr + 1), then A, = A, | A is maximal f|B(40yr + 1)-
lift of ~J [[1/2,1], and we have constructed paths Ai,..., Ay, each of which is a
maximal lift of v |[1/2,1]. Next we will show that Ay, = {A1,..., A} € Qyy;
i.e. Ay, is a maximal sequence of f | B(46r+1)-liftings of vJ |[1/2,1], as defined
in [R1]. We need only check that

card{v: A\ (t) =z} <i(x,f) for all ¢ and .

Let A={v:A(t) =2} #0, and let U(x, f, 0) be normal neighbourhood
of . There exists hg such that [\, ,|NU # 0 for all h > hg, v € A. Let h > hyg.
We may easily find a point n = ~J, (') in (N, {f(An| NU)}. Let &1, .., 6w
be the points in { A, (#') : v € A} C f71(n) NU. Since {Ap1,..., n,} is a
maximal sequence, we have for u=1,...,w,

O, = card {u: A\, (') = & } < i(&u, f).

Further, by the choice of n and since U is a normal neighbourhood of =z,
card A = 29“ < Zi(fu,f) <n(U,n) =n(U,z)=i(z, f),
u=1 u=1

where the last inequality is true because f~!(f(z)) NU = {z}. This proves
that Ay, = {A1,..., Ay} obtained above is a maximal sequence of f|B(46pr +1)-
liftings of ~vJ |[1/2,1], such that |[X,| C B(20pr) for 1 < v <m. Thus p;(yo) >
N(Ay,) = m. This proves the lemma.

Set

(4-21) 4 (y) = n(bor, i (y)) — pj(y)-
qj beiAng the difference of two measurable functions, is measurable relative to S’.
With AJ such that p;(y) = N(f\g), for k=1,2,..., let
Bl={yes :q =k}, B ={yte:yech)
ry={nl01/21]:y € B}
AL ={\ A €A yeE] |\ B(26r)}.
Then e%””_l(Ei) = %”_1(Ei/) and by the definition of E,‘Z} and the fact that
HA"1(S\ S) =0, we have

oo

1 _ 1 L
—— [ ar ) = == ke (E)
(4-22) i
_ 1 n—1¢ i’
=0 > kAN E]).
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We get jf”_l(Ei/) = (log(ag/al))n_lM(F‘,i) using a standard estimate, [V1,
7.7]. Thus (4-22) becomes

1

Wnp—1

1 1 1

(y) = > kM(TY) (log(oa/01))"™
k=1

[5 4;(y) dA"

Wn—1

= 1 (log(ag/al))n_lsz(Fi).
k=1

Wn—1

Further, Viisild’s inequality [V2, 3.1] gives us kM (I') < K;M(A]). Also note
that since the {I'}},  are disjoint, so are the {A7};x, and by [V1, 6.7],

q o0
SoSmah) < M(U U, AL).
b= k=1 77
AT

Using these two estimates, summing over j # J and recalling o; from (4-6) we
get

2
J#J

1_1 /qu(y) A" (y) < (tog(oz/o0))"™ K1 ( = UELA?;)

Wn Wnp—1
1 n—1 Wn—1
4-2 < | Kir———
(4-23) _wn_l(og(ffz/al)) Tog2)n
Ky
< ————bv(20y7).
= Qlogzym1 ™ 207)

If y € S, then by (4-14), (4-21) and (4-18) we have

(4-24) n(r,a;) < q;(y) + n(26or, 5;(y)).

On integrating over S, and summing over j # J, we obtain using (4-23),

Krbv (20
(4-25) Z n(r,a;) < W + Z v (2607, S(aj, 02)).
iFT i#

But from (2-3) and (4-8)

v (260, S(aj,00)) < v(46or) + c1 (bu(QGOT))l_l/n.

Using this (4-25) becomes
Kb

Z n(r,a;) < WV(QQQT) + (g — 1)v(46or) + (g — 1)e1 (br(260r))
J#EJ

1-1/n
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Finally we use (4-5) (v) in the above inequality to get

Z n(r,a;) < &V@Qm‘) + (¢ — L)v(46gr) + v(2607)
J#EJ

< [q - Kijb_l} v(46or).

In the situation when 7 > 1 this gives us

Kb
Zn(r, a;) < [q—i— W}V(ﬁlgor, 7).
J#J
Step III: Recall ro = max(ry,r). Fix r > rg, and use (2-2) to replace
v(46or, 7) by v(80r) to get,

#ZJn(r, a;) < [q + &] <V(800r) + KI(iZi;)nﬂ).

The inequality (4-4) (i) reduces this to

2K b
Z ’I’L(’I“, CLJ> S |:q + W} V(800T>,
J#J

and by (4-4) (ii) we obtain,

4K71b
Z n(r,a;) < [q + W + 2}4(16907“).
J#J

This proves Theorem 4-1.

Theorem 4-26. For n > 2, and K > 1, let f: R — R" be a nonconstant
K -qm function. Then there exist constants C; = C1(n, K) > 1, 6, =61(n, K) > 1

such that for every ai,...,aq4 € R", ¢ > 1, there exists a set E C [1,00) with
[ dN/A = oo such that

q
. n(r,a;)
- E — < Y.
(4-27) hrrn supj 1 [ (017) 1} Ch

rek

Proof of Theorem 4-26. We first use Theorem 3-1 with some fixed value
of C, say C' = 2, and obtain a corresponding 6 and a set E C [1,00) with
[ dM/A = o0, such that for j=1,...,q, r € E,

(4-28) n(r,a;) < 2A(0r).
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We will then show that (4-27) holds with

4K b
91 max( 690,9), Cl + (lOg 2)n—1
where b has been defined in (4-3). Asin Theorem 4-1, we assume that ai,...,a4 €

B(7/2) and ¢ > 0 such that B,,(a;) C B(7/2) and B,(a;) are disjoint.

Now apply Theorem 4-1 and obtain ro = ro(o,7,q, f) > 0. Fix r € E such
that r > ro. If ((n(r,a;)/A(617)) —1) <0 for (¢ —1) values of j, then by (4-28)
there is nothing to prove. Solet Q@ = {1 < j < ¢: ((n(r,a;)/A(61r)) — 1) > 0}
for all j € Q. We assume card@Q = ¢’ > 2.

Again we apply Theorem 4-1, to the same function f, but using the set
{aj : j € @} = {a}}. Note that the same o and 7, as for the {a;}, work for
{a’}. Theorem 4-1 yields 74 = 74(0, 7, ¢, f). From (4-4) and (4-5) (v) we see that
we may choose (o, 7,4, f) = ro(o,7,q, f); i.e. 7y = r9. So we have for r € F,
r>rg=ry, by (4-2),

4K1b

W + Q}A(er);

4K b
> n(r,a;) < [q’ + log 21 2)’n_1 + 2}A(1690r> < [q’ 4
JEQ

J#J

i.e.,

S ] < o ),

For j = J, since r € FE, we have from (4-28) that
n(r,ay) < 2A(0r) < 2A(0:1r).
Hence
; 4K

And by the definition of @,

[ -1, <o

7j=1

where r € E, r > rg. The theorem is proved.
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