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Abstract. Let f : Rn → R̄n be a nonconstant K -quasimeromorphic map. We prove
first that given C > 1 , there exists θ > 1 , θ depending only on n , K , C , such that when-
ever a1, . . . , aq ∈ R̄n are distinct, we have n(r, aj) ≤ CA(θr) for j = 1, . . . , q and r ∈ E ,
where E = E(f, a1, . . . , aq) has infinite logarithmic measure. This result is then used to obtain
the following converse to the defect relation as established by S. Rickman. Let f : Rn → R̄n

be a nonconstant K -quasimeromorphic map. Then there exist constants C1 > 1 and θ1 >
1 , depending only on n and K such that for a1, . . . , aq ∈ R̄n any distinct points, we have
lim sup r→∞

r∈E

∑q
j=1((n(r, aj))/(A(θ1r)) − 1)+ ≤ C1 where E can be taken to be the same set as

above. Any improvement or enlargement of the set E for the first result is immediately valid for
the second (main) result.

1. Introduction

Quasiregular (and quasimeromorphic) mappings form a natural generaliza-
tion of analytic (and meromorphic) maps to real n -dimensions. We abbreviate
these classes as qr and qm . These functions retain some of the most important
topological properties of analytic functions. A study of the value distribution the-
ory of such maps has been a subject of interest for many years. For an overview
of results in this area we refer to [R2].

Rickman has shown [R3] that a weak form of Picard’s theorem holds for
these mappings. Moreover in [R2], [R6] he proved that for a nonconstant, real
n -dimensional, n ≥ 3, K -qm function f , there exists a set E ⊂ [1, ∞) of finite
logarithmic measure, and a constant C(n, K) < ∞ , depending only on n and K
such that

lim sup
r→∞
r /∈E

q
∑

j=1

(

1 −
n(r, aj)

A(r)

)

+
≤ C(n, K),

where a1, . . . , aq are distinct points. For n = 3 this is qualitatively sharp, as can
be seen from [R6, Theorem 1.7]. Thus Nevannlinna’s defect relation generalizes in
qualitative form to qm maps.
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In this paper, we consider a converse inequality. For a nonconstant mero-
morphic function f in the plane, it was shown by J. Miles [Mi] that there exist
absolute constants K < ∞ and C ∈ (0, 1) and a set E = E(f) ⊂ [1,∞) having
lower logarithmic density at least C such that if a1, . . . , aq are distinct elements
of the Riemann sphere, then

lim sup
r→∞
r∈E

q
∑

j=1

(n(r, aj)

A(r)
− 1

)

+
≤ K.

Here we extend the above result, for meromorphic functions in the plane, to
qm maps and all dimensions.

The proof breaks up into two parts: Sections 3 and Section 4. In Section 3
we show that n(r, aj) ≤ CA(θr) for any given q points a1, . . . , aq and r taking
values in a set E of infinite logarithmic measure. This is an extension of [R1,
5.16], where the case q = 1 is considered. The proof is a slight modification of
the proof of the same. In Section 4 we first obtain an estimate which holds for all
except possibly one value aj . This estimate holds without the exceptional r -set,
but the aj chosen as exception does depend upon r . For such an aj we then use
the bound obtained in Theorem 3-1. An important open problem is to get a result
such as Theorem 3-1 off an exceptional set which does not depend on a . The main
analytic tool is path families, a natural generalization to space of extremal length.

I thank Professor David Drasin for suggesting this problem to me, as part of
my thesis, and also for his constant encouragement and guidance.

2. Notation and definitions

We denote by Rn the real euclidean n -space, and by R̄n the one-point
compactification R̄n = Rn ∪ {∞} . Set

Br(x) = { y ∈ Rn : |x − y| < r }, S(x, r) = ∂Br(x),

B(r) = Br(0), S(r) = S(0, r), and S = S(1).

The Lebesgue measure in Rn is denoted by L n and the normalized k -dimensional
Hausdorff measure in Rn by H k . We set ωn−1 = H n−1(S) . The Euclidean
metric in Rn is d . If γ: ∆ → R̄n is a path, we denote its locus γ∆ by |γ| .

R̄n is equipped with the spherical metric,

d[x, y] = |x − y|/[(1 + |x|2)(1 + |y|2)]1/2; x, y 6= ∞

d[x,∞] = 1/(1 + |x|2)1/2.

Definition. Let n ≥ 2, and let G be a domain in Rn . A continuous mapping
f : G → Rn is called quasiregular if (1) f is in the local Sobolev space W 1

n,loc(G) ;
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i.e., f has distributional partial derivatives which are locally Ln -integrable, and
(2) there exists a constant K , 1 ≤ K ≤ ∞ , such that

(2-1) |f ′(x)|n ≤ KJf (x)

holds for almost every x ∈ G . Here |f ′(x)| is the sup norm of the formal derivative
f ′(x) defined by means of partial derivatives and Jf (x) is the Jacobian determi-
nant of f at x . The smallest K in (2-1) is the outer dilatation KO(f) , and the
smallest K, 1 ≤ K ≤ ∞ , for which

Jf (x) ≤ K inf
|h|=1

|f ′(x)h|n a.e.

holds is the inner dilatation KI(f) of f . K(f) = max
(

KO(f), KI(f)
)

is the
maximal dilatation of f . If f is quasiregular and K(f) ≤ K , it is called K -
quasiregular.

Let G ⊂ R̄n be a domain. A mapping f : G → R̄n is called quasimeromorphic

if either fG = {∞} or the set E = f−1(∞) is discrete and f1 = f |G \ (E ∪ {∞})
is quasiregular. We set K(f) = K(f1), KO(f) = KO(f1) , and KI(f) = KI(f1) .

For a definition of the modulus of a family of curves we refer to [Vu].
If f : Rn → R̄n is nonconstant and qm, the counting function n(r, y) is

defined for r > 0, y ∈ R̄n , by

n(r, y) =
∑

x∈f−1(y)∩B̄(r)

i(x, f),

where i(x, f) is the local topological index; see [MRV1].
A(r) is the average of n(r, y) over R̄n with respect to the spherical metric.

If r, t > 0, ν
(

r, S(a, t)
)

is the average of the counting function over the sphere
S(a, t) with respect to H n−1 ,

ν
(

r, S(a, t)
)

=
1

ωn−1

∫

S

n(r, a + ty) dH
n−1(y),

A(r) =
2n

ωn

∫

Rn

n(r, y)

(1 + |y|2)n
dy.

In particular, when S(a, t) = S(t) , we set ν
(

r, S(t)
)

= ν(r, t) , and also ν(r, 1) =
ν(r) .

Let f : G → R̄n be qm. A domain D such that D̄ ⊂ G is called a normal
domain if f∂D = ∂fD . If x ∈ G and U is a normal domain such that U ∩
f−1

(

f(x)
)

= {x} , then U is called a normal neighbourhood of x . By [MRV1,
2.10], every point in G has arbitrarily small normal neighbourhoods.
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We repeatedly use the following result [R4, p. 228, 2.1]. If θ > 1 and r, s, t >
0, then

(2-2) ν(θr, t) ≥ ν(r, s) −
KI | log(t/s)|n−1

(log θ)n−1
.

We also need a comparison between averages on non-concentric spheres, S
and S(a, t) ⊂ B(1/2), for t small enough, say t < 1/4. This can be obtained by
applying the above result to the map φ ◦ f , where φ is a quasiconformal map of
R̄n onto R̄n , which is the translation x → x − a in Bt(a) and it is the identity
map outside B(1). φ can be taken to be 4-bilipschitz. Thus we get,

(2-3) ν
(

r, S(a, t)
)

≤ ν(2r) + c1

(

log(1/t)
)n−1

,

where we may take c1 = 42n−2K/(log 2)n−1 , since φ is 42n−2 -quasiconformal.

3. An upper bound on n(r, a)/A(θr)

Theorem 3-1. Let f : Rn → R̄n be a nonconstant K -quasimeromorphic
map. Then for each C > 1 , there exists θ > 1 , θ = θ(C, n, K) , such that
for every a1, . . . , aq ∈ R̄n , there exists a set E = E(a1, . . . , aq) ⊂ [1,∞) , with
∫

E
dλ/λ = ∞ , such that

(3-2) n(r, aj) ≤ CA(θr) for j = 1, . . . q, r ∈ E.

Note that here the role of E is different from that in [R4]. We begin with an
adaptation of [R1, 5.4] to the case that a 6= 0. It is a quantification of the fact
that a nonconstant qm map is light.

Lemma 3-3. Let f : Rn → R̄n be a nonconstant K -quasimeromorphic map.
Choose 1 < u < v , t > 0 and r > 0 . Let a ∈ Rn be given. Set

(3-4) Ha,f (r, t) = {λ ∈ [r, ur] : S(λ) ∩ f−1(Bt(a)c) 6= ∅ },

φa,f (r, t) =

∫

Ha,f (r,t)

dλ

λ
.

Then,

(3-5) ν
(

vr, S(a, t)
)

≥

[

1 −
2ωn−1KIKO

cnφa,f (r, t)(log v/u)n−1

]

n(r, a)

where cn > 0 is the constant in [V1, 10.11] which depends only on n .
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Proof. Using (2-2), we may obtain [R1, 5.5] without the constant c′ , as

(3-6) ν(vr, t) ≥

[

1 −
2KIKOωn−1

cnφ(r, t)(log v/u)n−1

]

n(r, 0).

Let g(z) = f(z)− a . Then νg(vr, t) ≡ νf

(

vr, S(a, t)
)

and ng(r, 0) = nf (r, a) . Let

ζ = w−a , so that g(z) = ζ◦f(z) , and also S(λ)∩g−1
(

B(t)c
)

= S(λ)∩f−1(Bt(a)c) .
Hence H0,g(r, t) = Ha,f (r, t) and φ0,g(r, t) = φa,f (r, t) . Now (3-6) applied to g
gives (3-5).

Proof of Theorem 3-1. We divide the proof into three steps. The second step
proves the theorem under the normalization a1, . . . , aq ∈ B(1/2). The first and
third steps are merely to facilitate this normalization.

Step I: Let C > 1 be given. Let a1, . . . aq ∈ R̄n . By a rotation of the sphere
we may assume that a1, . . . , aq ∈ B(τ/2) for some τ ≥ 1. Let σ > 0 be such that
the balls {B̄στ(aj)} are disjoint and {B̄στ (aj)} ⊂ B(τ/2) for all j . We claim that
for given r0 > 0, there exists r1 ≥ r0 such that for all r ∈ [r1, u

1/4r1] ,

(3-7) n(r, aj) ≤ CA(θr) for j = 1, . . . , q,

where u > 1 is defined in (3-11). By repeating this argument, we obtain our set
E = ∪∞

i=1[ri, u
1/4ri] , so that E has infinite logarithmic measure. We may assume

that n(r0, aj) ≥ 1 for all j , since the j ’s for which n(r, aj) = 0 for all r satisfy
the claim. Let

(3-8) C′ = C1/4 > 1.

By [R1, 4.10] we choose r0 so that for r ≥ r0 ,

(3-9) ν(r) < C′A(2r).

We assume ∞ is an essential singularity (i.e. f has no limit in R̄n as we approach
∞), for otherwise f extends to R̄n as a qm map and it has finite degree [MRV2],
[MS]. By [R1, 3.1] we then have that A(r) → ∞ . So we may choose r0 such that
for r ≥ r0

(3-10) C′2KI

( log τ

log 2

)n−1

+ C′c1

(

log
1

σ

)n−1

< (C′4 − C′3)A(r).

Step II: In this step we replace f by f/τ and a1, . . . , aq by a1/τ, . . . , aq/τ .
However, for convenience of notation, we still call them f and a1, . . . , aq . Note
that we are now in the situation a1, . . . , aq ∈ B(1/2), {B̄σ(aj)} disjoint and each
B̄σ(aj) ⊂ B(1/2). In order to apply Lemma 3-3 we define u > 1 by

(3-11)
1

C′
= 1 −

4ωn−1KOKI

cn(log u)n
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where cn > 0 is as in [V1, 10.11].
For u > 1, as above and t, r > 0, let φj(r, t) ≡ φaj ,f (r, t) be as in Lemma 3-3,

and let

(3-12) Ψ(t) = sup
r≥r0

min
1≤j≤q

φj(r, t).

Then Ψ is decreasing in t .

Case (i): Ψ(σ) ≥ (7/8) logu .
Then, by the definition of Ψ(σ) , there exists r1 ≥ r0 such that minj φj(r1, σ)

≥ (3/4) logu ; i.e.

(3-13) φj(r1, σ) ≥ (3/4) logu, 1 ≤ j ≤ q.

From the definition of φj(r1, σ) , we note that

φj(r1, σ) =

∫

Hj(r1,σ)

dλ

λ
=

∫

Hj(r1,σ)∩[r1,u1/4r1]

dλ

λ
+

∫

Hj(r1,σ)∩[u1/4r1,ur1]

dλ

λ

≤
1

4
log u +

∫

Hj(r1,σ)∩[u1/4r1,ur1]

dλ

λ
.

From this and (3-13) we obtain for r ∈ [r1, u
1/4r1] and for all j = 1, . . . , q ,

(3-14) φj(r, σ) ≥

∫

Hj(r1,σ)∩[u1/4r1,ur1]

dλ

λ
≥

1

2
log u.

We now apply Lemma 3-3 with a = aj , t = σ , r ∈ [r1, u
1/4r1] , v = u2 along with

(3-14) and (3-11) to obtain

(3-15)

ν
(

vr, S(aj, σ)
)

≥
[

1 −
2ωn−1KIKO

cnφj(r, σ)(logu)n−1

]

n(r, aj)

≥
[

1 −
4ωn−1KIKO

cn(log u)n

]

n(r, aj)

=
1

C′
n(r, aj) j = 1, . . . , q.

Now using (2-3) with t = σ and (3-15), we get for r ∈ [r1, u
1/4r1] and j = 1, . . . , q ,

that

(3-16) n(r, aj) ≤ C′ν
(

vr, S(aj, σ)
)

≤ C′ν(2vr) + C′c1(log 1/σ)n−1.

Case (ii): Ψ(σ) < (7/8) logu .
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Since f is discrete, for each fixed r , φj(r, t) → log u as t → 0. Let t0 =
inf{ t : t ≤ σ, Ψ(t) ≤ (7/8) logu } . One checks that t0 > 0. We may assume
t0 < σ . Let δ be so small that

(3-17) 0 < δ < min{ 1
2
t0, σ − t0},

4δ

t0
< (log 2)

(C′ − 1

KIC′2

)1/(n−1)

and let

(3-18) t1 = t0 − δ, t′1 = t0 + δ.

Since Ψ(t1) > 7
8

log u , there exists r1 ≥ r0 with minj φj(r1, t1) ≥
3
4

log u ; i.e.

φj(r1, t1) ≥
3
4

log u, j = 1, . . . , q.

From this we may conclude, exactly as in Case (i), that for r ∈ [r1, u
1/4r1] ,

(3-19) φj(r, t1) ≥
1
2 log u, j = 1, . . . , q.

Now we apply Lemma 3-3 with r ∈ [r1, u
1/4r1] , t = t1 , a = aj , v = u2 , along

with (3-19) and (3-11), to obtain

(3-20)

ν
(

vr, S(aj, t1)
)

≥
[

1 −
2ωn−1KIKO

cnφj(r, t1)(log u)n−1

]

n(r, aj)

≥
[

1 −
4ωn−1KIKO

cn(log u)n

]

n(r, aj)

≥
1

C′
n(r, aj), 1 ≤ j ≤ q.

Let t0 < t < t′1 . By (3-12), Ψ(t) ≡ supr≥r0
minj φj(r, t) ≤ (7/8) logu , and

since 2vr ≥ r ≥ r0 , we find for an appropriate 1 ≤ l ≤ q , that φl(2vr, t) ≡
minj φj(2vr, t) ≤ (7/8) logu . Then by the definition of φl(2vr, t) there exists
̺ ∈ [2vr, 2vur] such that S(̺) ∩ f−1(Bt(al)

c
) = ∅ . The analysis of [MRV1,

2.5], which is stated only for qr maps but applies as well to qm maps, shows that
every component of f−1

(

Bt(al)
c)

which meets B̄(̺) is a normal domain contained
in B(̺) . Hence

(3-21) n(̺, y) = n(̺, z) for all y, z ∈ B̄t(al)
c
.

In particular, since t < t′1 < σ and the {B̄(aj , σ)} are disjoint, we have for j 6= l ,
n(̺, y) = n(̺, aj + t1y) for all y ∈ S . And so on averaging,

(3-22) ν(̺) = ν
(

̺, S(aj, t1)
)

j 6= l.
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For j = l , since t < t′1 , we note from (3-21) that n(̺, y) = n(̺, al + t′1y) for
all y ∈ S . So again on averaging,

(3-23) ν(̺) = ν
(

̺, S(al, t
′
1)

)

.

We now replace ν
(

̺, S(al, t
′
1)

)

by ν
(

̺, S(al, t1)
)

with controllable error. Letting
θ = 2, s = t1 , t = t′1 , r = vr , we obtain from (2-2) that

(3-24) ν
(

vr, S(al, t1)
)

≤ ν
(

2vr, S(al, t
′
1)

)

+
KI

(

log(t′1/t1)
)n−1

(log 2)n−1
.

Now we find, using (3-18) and (3-17), that

log
t′1
t1

= log
(

1 +
2δ

t0 − δ

)

<
2δ

t0 − δ
<

4δ

t0
< (log 2)

(C′ − 1

KIC′2

)1/(n−1)

.

Hence, from (3-24),

(3-25) ν
(

vr, S(al, t1)
)

≤ ν
(

2vr, S(al, t
′
1)

)

+ (C′ − 1)/C′2.

Since n(r, al) ≥ n(r0, al) ≥ 1 as stated in Step I, we have from (3-20) that
ν
(

vr, S(al, t1)
)

≥ 1/C′ . Substituting this inequality on the right hand side of
(3-25) and unraveling, we obtain,

ν
(

vr, S(al, t1)
)

≤ C′ν
(

2vr, S(al, t
′
1)

)

.

But since 2vr ≤ ̺ ≤ 2vur , the last inequality, together with (3-20) and (3-23)
gives for r ∈ [r1, u

1/4r1] ,

(3-26) n(r, al) ≤ C′2ν
(

̺, S(al, t
′
1)

)

= C′2ν(̺).

And again using the fact that 2vr ≤ ̺ along with (3-20) and (3-22), we find for
j 6= l , r ∈ [r1, u

1/4r1]

(3-27) n(r, aj) ≤ C′ν
(

̺, S(aj, t1)
)

= C′ν(̺).

Using the inequality 2vr ≤ ̺ , we conclude in both cases, from (3-26), (3-27) and
(3-16) that, for j = 1, . . . , q , r ∈ [r1, u

1/4r1] ,

(3-28) n(r, aj) ≤ C′2ν(̺) + C′c1(log 1/σ)n−1.

Finally, we recall the change of scale we made in the beginning of Step II, and
conclude from (3-28) that for r ∈ [r1, u

1/4r1] ,

(3-29) n(r, aj) ≤ C′2ν(̺, τ) + C′c1(log 1/σ)n−1

for the original f and a1, . . . , aq .

Step III: First we use (2-2) to replace ν(̺, τ) by ν(2̺) in (3-29) and get

n(r, aj) ≤ C′2ν(2̺) + C′2KI

( log τ

log 2

)n−1

+ C′c1(log 1/σ)n−1.

Using (3-9), (3-10) (3-8) and ̺ ≤ 2uvr we now get for r ∈ [r1, u
1/4r1] and j =

1, . . . , q ,

n(r, aj) ≤ C′3A(4̺) + (C′4 − C′3)A(4̺) ≤ CA(θr),

where θ = 8uv = 8u3 . This proves the theorem.
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4. The main result

We first prove an intermediate result, i.e., the estimate (4-2). This is an
essential fact needed for the main theorem.

Theorem 4-1. Let n ≥ 2 and K ≥ 1 . There exist positive constants
θ0 = θ0(n, K) , b = b(n, K) such that if f : Rn → R̄n is a nonconstant K -qm
map and a1, . . . , aq ∈ R̄n , are any distinct points, with q > 1 , then there exist
r0 = r0(a1, . . . , aq, f) > 0 such that for each r ≥ r0 , we have

(4-2)

q
∑

j=1
j 6=J(r)

n(r, aj) ≤
[

q +
4KIb

(log 2)n−1
+ 2

]

A(16θ0r),

for some J(r) ∈ {1, . . . , q} . The constants θ0 and b are given by

(4-3) log θ0 =
ωn−1KOc1

2n−4cnn
, b =

2KOωn−1

cn log θ0

with c1 and cn as in (2-3) and (3-5) respectively.

Observe that there is no exceptional set for the r -values here. However, the
estimate obtained is close to what we want, save for one aJ(r) . For this aJ(r) we
use Theorem 3-1. We thus obtain our main result, Theorem 4-26, on the same
exceptional set of r -values as that obtained in Theorem 3-1. It is worth noting
that any enlargement or improvement of the set E of Theorem 3-1, is also valid
for Theorem 4-26.

Proof of Theorem 4-1. Again we divide the proof into three steps with main
body of the proof being in the second step.

Step I: We may assume, as in the proof of Theorem 3-1, that ∞ is an es-
sential singularity, so that A(r) → ∞ as r → ∞ . By a rotation we assume that
a1, . . . , aq ∈ Rn . Let τ ≥ 1 and σ > 0 be such that Bστ (aj) ⊂ B(τ/2), and the
{B̄στ (aj)} are disjoint. We set r0 = max(r1, r2) , where r1 and r2 are obtained
below. Choose r1 = r1(τ, q, f) > 0 such that for r ≥ r1 ,

(4-4)
(i)

[

q +
KIb

(log 2)n−1

]

KI

( log τ

log 2

)n−1

≤
KIb

(log 2)n−1
ν(r)

(ii) ν(r) <
q

q − 1
A(2r) by [R1, 4.10].

Step II: Again by replacing f by f/τ we reduce to the case τ = 1. Since



70 Swati Sastry

ν(r) → ∞ as r → ∞ , we can choose r2 = r2(σ, q, f) > 0 such that for r ≥ r2 ,

(4-5)

(i) [bν(2θ0r)]
1/n + 1 < [2bν(2θ0r)]

1/n,

(ii) log 2 <
(

bν(2θ0r)
)1/(n−1)

− (bν(2θ0r))
1/n,

(iii)
1

1 +
(

log(σ/2)
)

/
(

bν(2θ0r)
)1/(n−1)

< 21/n,

(iv) 2 exp
(

−1
2

(

bν(2θ0r)
)1/n)

< σ,

(v) c1qb < (bν
(

2θ0r)
)1/n

.

Fix r ≥ r2 . Since f is qm , H n(∂B(θ0r)) = 0 implies H n
(

f
(

∂B(θ0r)
))

= 0, by

[Vu, 10.5(3)]. From this and Fubini’s theorem it follows that H n−1
(

f
(

∂B(θ0r)
)

∩

S(aj, σ1)
)

= 0 for a.e.

σ1 ∈
[

exp
{

−
(

bν(2θ0r)
)1/(n−1)}

, 2 exp
{

−
(

bν(2θ0r)
)1/(n−1)}]

,

for each j = 1, . . . , q . Hence there exists ε1 ∈ [1, 2] such that for

(4-6) σ1 = ε1 exp
{

−
(

bν(2θ0r)
)1/(n−1)}

(4-7) H
n−1

(

f
(

∂B(θ0r)
)

∩ S(aj , σ1)
)

= 0 for all j = 1, . . . , q.

Then by (4-6) and (4-5) (ii) we have

(4-8) σ1 ≤ 2 exp
{

−
(

bν(2θ0r)
)1/(n−1)}

< exp
{

−
(

bν(2θ0r)
)1/n}

= σ2

and by (4-5) (iv),

σ2 = exp
{

−
(

bν(2θ0r)
)1/n}

< σ.

Let αj and βj be the maps of S onto S(aj, σ1) and S(aj, σ2) respectively given
by αj(y) = aj + σ1y , βj(y) = aj + σ2y .

For y ∈ S , let γj
y: [0, 1] → Rn be the line segment joining aj to βj(y) ,

parametrized so that γj
y: [0, 1/2] joins aj to αj(y) ∈ S(aj, σ1) , gyj: [1/2, 1] joins

αj(y) to βj(y) ∈ S(aj, σ2) .

Comparison of n(r, aj) with n
(

θ0r, αj(y)
)

: Let f |X denote f restricted to
X and let Λj

y = {λ1, . . . , λh} be a maximal sequence of f |B(4θ0r + 1)-liftings

of γj
y | [0, 1/2] starting at points of f−1(aj) ∩ B̄(r) , as defined in [R1]. Then

necessarily h = n(r, aj) . The following crucial lemma has been inspired by the
proof of [R2, 3.2].
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Lemma 4-9. The family of curves

Fj =
⋃

y∈SΛj
y

lies completely in B(θ0r) , except perhaps for one j = J(r) ∈ {1, . . . , q} .

Proof. Note that by definition, all paths in Fj start at preimages of aj in
B̄(r) . We prove the lemma by contradiction. Suppose there exist j 6= k and
ηj ∈ Fj , ηk ∈ Fk , such that ηj , ηk * B(θ0r) . Let Γ be the family of paths in
B(θ0r) \ B̄(r) joining the loci |ηj | and |ηk| . Note that |f(ηj)| and |f(ηk)| are
line segments starting at aj and ak and contained in B̄(aj, σ1) and B̄(ak, σ1)
respectively. Hence each path in fΓ contains sub-paths which join S(aj , σ1) to
S(aj, σ) and S(ak, σ) to S(ak, σ1) . Set

̺(z) =







(

2 log(σ/σ1)|z − aj |
)−1

, σ1 < |z − aj | < σ
(

2 log(σ/σ1)|z − ak|
)−1

, σ1 < |z − ak| < σ
0, otherwise.

Then ̺ is well-defined by the choice of σ . Also, ̺ is admissible for the family
fΓ, and by [MRV1, 3.2] we obtain

M(Γ) ≤ KO

∫

Rn

̺(z)
n
n(θ0r, z) dL

n(z)

=
KO

(

2 log(σ/σ1)
)n

∫

{σ1<|z−aj |<σ}

n(θ0r, z)|z − aj |
−n dL

n(z)

+
KO

(

2 log(σ/σ1)
)n

∫

{σ1<|z−ak|<σ}

n(θ0r, z)|z − ak|
−n dL

n(z)

= I + II.(4 − 10)

We obtain an estimate for I . Exactly the same estimate holds for II as well. By
transfering the integral of (4-10) into polar coordinates, we find that,

I = KO

(

2 log(σ/σ1)
)−n

∫ σ

σ1

∫

S

n(θ0r, aj + τy) dH
n−1(y)τ−1 dτ

≡ KOωn−1

(

2 log(σ/σ1)
)−n

∫ σ

σ1

ν(θ0r, S(aj, τ))τ−1 dτ.

Using (2-3), with θ = θ0 ,

(4-11)

I ≤
KOωn−1

(

2 log(σ/σ1)
)n

∫ σ

σ1

{

ν
(

2θ0r) + c1(log(1/τ)
)n−1}

τ−1 dτ

≤
KOωn−1

(

2 log(σ/σ1)
)n

[

ν(2θ0r) log(σ/σ1) + c1

(

log(1/σ1)
)n

n

]

≤
KOωn−1

2n

[

ν(2θ0r)
(

log(σ/σ1)
)n−1 +

c1

n

( log 1/σ1

log σ/σ1

)
n]
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Now using (4-6), the fact that ε1 ∈ [1, 2] , and (4-5) (iii), we find that

(4-12)

log(1/σ1)

log(σ/σ1)
=

log(1/ε1) +
(

bν(2θ0r)
)1/(n−1)

log σ + log(1/ε1) +
(

bν(2θ0r)
)1/(n−1)

≤

(

bν(2θ0r)
)1/(n−1)

log σ + log(1/2) +
(

bν(2θ0r)
)1/(n−1)

=
1

1 + (log σ/2)/
(

bν(2θ0r)
)1/(n−1)

≤ 21/n.

Also, since ε1 < 2, (4-6) and (4-5) (iv) yield that

σ

σ1
>

2 exp
{

−1
2

(

bν(2θ0r)
)1/n}

ε1 exp
{

−
(

bν(2θ0r)
)1/(n−1)}

> exp
{

1
2

(

bν(2θ0r)
)1/(n−1)}

,

and hence

(4-13)
(

log
σ

σ1

)n−1

>
bν(2θ0r)

2n−1
.

Substituting (4-12) and (4-13) into (4-11) we get

I ≤ KOωn−12
−n

[2n−1

b
+

2c1

n

]

≤
KOωn−1

2b
+

ωn−1KOc1

2n−1n
.

The same estimate holds for II . Substituting these and the value of b from (4-3)
into (4-10) we obtain

M(Γ) ≤
KOωn−1

b
+

ωn−1KOc1

2n−2n
=

cn log θ0

2
+

ωn−1KOc1

2n−2n
.

Further by [V1, (10.12)], M(Γ) ≥ cn log θ0 so that

cn log θ0

2
≤

ωn−1KOc1

2n−2n
.

But this contradicts our choice of θ0 in (4-3). This proves the lemma.

From this lemma, we find that for j 6= J(r) , Fj ⊂ B(θ0r) . If J(r) does
not exist, so that Fj ⊂ B(θ0r) for all j , we then set J(r) = q . Fix j 6= J , and
y ∈ S . Then Λj

y = {λ1, . . . , λh} ⊂ B(θ0r) , and since Λj
y is a maximal sequence of

f |B(4θ0r + 1) lifts of γj
y | [0, 1/2] we have , for all j 6= J , y ∈ S ,

(4-14) h = n(r, aj) ≤ n
(

θ0r, αj(y)
)

.
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Now set

(4-15) Aj = S(aj, σ1) ∩
{

f
(

Bf ∩ B̄(8θ0r)
)

∪ f
(

∂B(θ0r)
)}

where Bf is the branch set, i.e. the set of points where f is not a local homeo-
morphism. From [MR, 3.1] we note that for all j = 1, . . . , q ,

H
n−1

(

S(aj, σ1) ∩ f
(

Bf ∩ B̄(8θ0r)
))

= 0.

This along with (4-7) implies that H n−1(Aj) = 0 for all j . Further, we have that
H n−1

(

αj
−1(Aj)

)

= 0 for all j .
Set

(4-16) S′ = S \
[

⋃q
j=1αj

−1(Aj)
]

.

Comparison of n
(

θ0r, αj(y)
)

with n
(

2θ0r, βj(y)
)

. For any y ∈ S , we rede-
fine Λj

y = {λ1, . . . , λg} to be a maximal sequence of f |B(4θ0r + 1)-liftings of

γj
y | [1/2, 1] , starting at points of f−1

(

αj(y)
)

∩ B̄(θ0r) , where g = n
(

θ0r, αj(y)
)

.

Let the set of such sequences be Ωj
y . For Λj

y ∈ Ωj
y we set

N(Λj
y) = card { ν : |λν | ⊂ B̄(2θ0r) }

and define

(4-17) pj(y) = sup
Λj

y∈Ωj
y

N(Λj
y).

Fix an extremal sequence Λ̂j
y ∈ Ωj

y ; i.e. N(Λ̂j
y) = pj(y) . Then by the definition of

a maximal sequence of f -liftings, we have,

(4-18) pj(y) ≤ n
(

2θ0r, βj(y)
)

.

We shall integrate n
(

θ0r, αj(y)
)

− pj(y) on S and for this we need the following
lemma, which is almost entirely an imitation of [R4, 4.1].

Lemma 4-19. Let S′ and pj be as in (4-16) and (4-17), then pj is upper
semi-continuous on S′ .

Proof. Let y0 ∈ S′ , then by (4-16) and (4-15), αj(y0) /∈ f
(

Bf ∩ B̄(8θ0r)
)

∪

f
(

∂B(θ0r)
)

. So if f−1
(

αj(y0)
)

∩ B̄(θ0r) = {x1, . . . , xg} , with g = n
(

θ0r, αj(y0)
)

,
then {x1, . . . , xg} ⊂ B(θ0r) . Let y1, y2, . . . be a sequence in S′ such that yh → y0 .
The lemma asserts that

lim sup
h→∞

pj(yh) ≤ pj(y0).
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By choosing a subsequence we may assume that for some integer m , pj(yh) ≡ m
holds for all h ≥ 1. Also n

(

θ0r, αj(y)
)

is upper semi-continuous in y because

n(r, y) is. Hence if gh = n
(

θ0r, αj(yh)
)

, then lim suph→∞ gh ≤ g . We choose and
fix the following:

(i) Normal neighbourhoods V1, . . . , Vg ⊂ B(θ0r) of the points x1, . . . , xg , re-
spectively, such that αj(yh) ∈

⋂g
ν=1 f(Vν) , h ≥ 1. (This then implies f−1

(

αj(yh)
)

∩Vν 6= ∅ for all ν , so that gh ≥ g ; i.e. gh = g .)
(ii) For each h ≥ 1 a maximal sequence Λ̂j

yh
= {λh,1, . . . , λh,g} ∈ Ωj

yh
such

that λh,ν starts at a point ζh,ν in f−1
(

αj(yh)
)

∩Vν for ν = 1, . . . , g , and |λh,ν | ⊂
B̄(2θ0r) for ν = 1, . . . , m (since pj(yh) ≡ m).

We divide the ν ’s, 1 ≤ ν ≤ g , into two groups. First let ν ∈ {1, . . . , m}
be fixed. We claim that the family {λh,ν : h = 1, 2, . . .} is equicontinuous on
1/2 ≤ t ≤ 1. Indeed, choose ε > 0. For t ∈ [1/2, 1] there exists δt > 0 such
that U(ξ, f, ̺) is a normal neighbourhood of ξ with d

(

U(ξ, f, ̺)
)

< ε for each

ξ ∈ f−1
(

γj
y0

(t)
)

∩ B̄(2θ0r) , and

(4-20) B̄(2θ0r)∩f−1
(

B
(

γj
y0

(t), ̺
))

⊂
⋃

ξ

{

U(ξ, f, ̺) : ξ ∈ f−1
(

γj
y0

(t)
)

∩ B̄(2θ0r)
}

whenever 0 < ̺ < δt . We cover γj
y0

([1/2, 1]) with a finite number of balls

B(γj
y0

(t), δt/2), say B(ηu, ̺u), u = 1, . . . , v . Again by taking a subsequence of

the {yh} we have γj
yh

([1/2, 1]) ⊂
⋃v

u=1 B(ηu, ̺u) , and |αj(yh) − αj(y0)| ≤ δ =
min1≤u≤v{̺u/8} , |βj(yh) − βj(y0)| ≤ δ for all h ≥ 1. Fix t ∈ [1/2, 1] . Since γ is
continuous there exists u such that for any h ≥ 1

γj
yh

(t′) ∈ B(ηu, 2̺u) for |t′ − t| < δ.

For each such h there exists then ξ ∈ f−1(ηu) ∩ B̄(2θ0r) such that, by (4-20)

|λh,ν(t′)| ⊂ U(ξ, f, 2̺u) for |t′ − t| < δ.

And since d
(

U(ξ, f, 2̺u)
)

< ε for all h ≥ 1, the family {λh,ν}h≥1 is equicontin-
uous. By Ascoli’s theorem we may conclude that {λh,ν}h≥1 converges uniformly
to a path λν : [1/2, 1] → B̄(2θ0r) . The path λν is a maximal f |B(4θ0r + 1)-lift
of γj

y0
| [1/2, 1] .

Next fix ν ∈ {m+1, . . . , g} . Let the end-point of λh,ν , in B(4θ0r+1), occur at
t = th < 1 and set t0 = lim suph→∞ th . We shall construct a maximal f |B(4θ0r+
1)-lift λν of γj

y0
| [1/2, 1] with end-point t0 as follows. By taking subsequences of

{th} again, we may assume t0 = limh→∞ th . As above we conclude that the paths
λh,ν ◦ Gh , where Gh maps [1/2, t0) affinely onto [1/2, th) , converges uniformly

on compact subsets of [1/2, t0) to a path λ̃ν : [1/2, t0) → B̄(4θ0r + 1) which is
then a lift of γj

y0
| [1/2, t0) . The path has an extension to a path λ̄ν : [1/2, t0] →

B̄(4θ0r + 1), by [MRV3, 3.12]. If ∆ ⊂ [1/2, t0] is the largest interval such that
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1/2 ∈ ∆ and λ̄ν∆ ⊂ B̄(4θ0r + 1), then λν = λ̄ν |∆ is maximal f |B(4θ0r + 1)-
lift of γj

y0
| [1/2, 1] , and we have constructed paths λ1, . . . , λg , each of which is a

maximal lift of γj
y0

| [1/2, 1] . Next we will show that Λy0
= {λ1, . . . , λg} ∈ Ωy0

;

i.e. Λy0
is a maximal sequence of f |B(4θ0r+1)-liftings of γj

y0
| [1/2, 1] , as defined

in [R1]. We need only check that

card { ν : λν(t) = x } ≤ i(x, f) for all t and x.

Let A = {ν : λν(t) = x} 6= ∅ , and let U(x, f, ̺) be normal neighbourhood
of x . There exists h0 such that |λh,ν| ∩U 6= ∅ for all h ≥ h0 , ν ∈ A . Let h ≥ h0 .
We may easily find a point η = γj

yh
(t′) in

⋂

ν∈A{f(|λh,ν| ∩ U)} . Let ξ1, . . . , ξw

be the points in {λh,ν(t′) : ν ∈ A } ⊂ f−1(η) ∩ U . Since {λh,1, . . . , λh,g} is a
maximal sequence, we have for u = 1, . . . , w ,

θu = card { u : λh,ν(t′) = ξu } ≤ i(ξu, f).

Further, by the choice of η and since U is a normal neighbourhood of x ,

card A =
w

∑

u=1

θu ≤
w

∑

u=1

i(ξu, f) ≤ n(U, η) = n(U, x) = i(x, f),

where the last inequality is true because f−1
(

f(x)
)

∩ U = {x} . This proves
that Λy0

= {λ1, . . . , λg} obtained above is a maximal sequence of f |B(4θ0r +1)-
liftings of γj

y0
| [1/2, 1] , such that |λν | ⊂ B̄(2θ0r) for 1 ≤ ν ≤ m . Thus pj(y0) ≥

N(Λy0
) = m . This proves the lemma.

Set

(4-21) qj(y) = n
(

θ0r, αj(y)
)

− pj(y).

qj , being the difference of two measurable functions, is measurable relative to S′ .

With Λ̂j
y such that pj(y) = N(Λ̂j

y) , for k = 1, 2, . . ., let

Ej
k = { y ∈ S′ : qj(y) = k }, Ej

k

′
= { y + aj : y ∈ Ej

k }

Γj
k = { γj

y | [1/2, 1] : y ∈ Ej
k }

∆j
k = {λν : λν ∈ Λ̂j

y, y ∈ Ej
k, |λν | * B̄(2θ0r) }.

Then H n−1(Ej
k) = H n−1(Ej

k

′
) and by the definition of Ej

k and the fact that
H n−1(S \ S′) = 0, we have

(4-22)

1

ωn−1

∫

S

qj(y) dH
n−1(y) =

1

ωn−1

∞
∑

k=1

kH
n−1(Ej

k)

=
1

ωn−1

∞
∑

k=1

kH
n−1(Ej

k

′
).



76 Swati Sastry

We get H n−1(Ej
k

′
) =

(

log(σ2/σ1)
)n−1

M(Γj
k) using a standard estimate, [V1,

7.7]. Thus (4-22) becomes

1

ωn−1

∫

S

qj(y) dH
n−1(y) =

1

ωn−1

∞
∑

k=1

kM(Γj
k)

(

log(σ2/σ1)
)n−1

=
1

ωn−1

(

log(σ2/σ1)
)n−1

∞
∑

k=1

kM(Γj
k).

Further, Väisälä’s inequality [V2, 3.1] gives us kM(Γj
k) ≤ KIM(∆j

k) . Also note

that since the {Γj
k}j,k are disjoint, so are the {∆j

k}j,k , and by [V1, 6.7],

q
∑

bj=1
j 6=J

∞
∑

k=1

M(∆j
k) ≤ M

(

⋃q
j=1
j 6=J

⋃∞
k=1∆

j
k

)

.

Using these two estimates, summing over j 6= J and recalling σ1 from (4-6) we
get

∑

j 6=J

1

ωn−1

∫

S

qj(y) dH
n−1(y) ≤

1

ωn−1

(

log(σ2/σ1)
)n−1

KIM
(

⋃q
j=1
j 6=J

⋃∞
k=1∆

j
k

)

≤
1

ωn−1

(

log(σ2/σ1)
)n−1

KI
ωn−1

(log 2)n−1
(4-23)

≤
KI

(log 2)n−1
bν(2θ0r).

If y ∈ S , then by (4-14), (4-21) and (4-18) we have

(4-24) n(r, aj) ≤ qj(y) + n
(

2θ0r, βj(y)
)

.

On integrating over S , and summing over j 6= J , we obtain using (4-23),

(4-25)
∑

j 6=J

n(r, aj) ≤
KIbν(2θ0r)

(log 2)n−1
+

∑

j 6=J

ν
(

2θ0r, S(aj, σ2)
)

.

But from (2-3) and (4-8)

ν
(

2θ0r, S(aj, σ2)
)

≤ ν(4θ0r) + c1

(

bν(2θ0r)
)1−1/n

.

Using this (4-25) becomes

∑

j 6=J

n(r, aj) ≤
KIb

(log 2)n−1
ν(2θ0r) + (q − 1)ν(4θ0r) + (q − 1)c1

(

bν(2θ0r)
)1−1/n

.
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Finally we use (4-5) (v) in the above inequality to get

∑

j 6=J

n(r, aj) ≤
KIb

(log 2)n−1
ν(2θ0r) + (q − 1)ν(4θ0r) + ν(2θ0r)

≤
[

q +
KIb

(log 2)n−1

]

ν(4θ0r).

In the situation when τ > 1 this gives us

∑

j 6=J

n(r, aj) ≤
[

q +
KIb

(log 2)n−1

]

ν(4θ0r, τ).

Step III: Recall r0 = max(r1, r2) . Fix r ≥ r0 , and use (2-2) to replace
ν(4θ0r, τ) by ν(8θ0r) to get,

∑

j 6=J

n(r, aj) ≤
[

q +
KIb

(log 2)n−1

](

ν(8θ0r) + KI

( log τ

log 2

)n−1)

.

The inequality (4-4) (i) reduces this to

∑

j 6=J

n(r, aj) ≤
[

q +
2KIb

(log 2)n−1

]

ν(8θ0r),

and by (4-4) (ii) we obtain,

∑

j 6=J

n(r, aj) ≤
[

q +
4KIb

(log 2)n−1
+ 2

]

A(16θ0r).

This proves Theorem 4-1.

Theorem 4-26. For n ≥ 2 , and K ≥ 1 , let f : Rn → R̄n be a nonconstant
K -qm function. Then there exist constants C1 = C1(n, K) > 1 , θ1 = θ1(n, K) > 1
such that for every a1, . . . , aq ∈ R̄n , q > 1 , there exists a set E ⊂ [1,∞) with
∫

E
dλ/λ = ∞ such that

(4-27) lim sup
r→∞
r∈E

q
∑

j=1

[n(r, aj)

A(θ1r)
− 1

]

+
≤ C1.

Proof of Theorem 4-26. We first use Theorem 3-1 with some fixed value
of C , say C = 2, and obtain a corresponding θ and a set E ⊂ [1,∞) with
∫

E
dλ/λ = ∞ , such that for j = 1, . . . , q , r ∈ E ,

(4-28) n(r, aj) ≤ 2A(θr).
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We will then show that (4-27) holds with

θ1 = max(16θ0, θ), C1 = 4 +
4KIb

(log 2)n−1

where b has been defined in (4-3). As in Theorem 4-1, we assume that a1, . . . , aq ∈
B(τ/2) and σ > 0 such that Bστ (aj) ⊂ B(τ/2) and B̄στ (aj) are disjoint.

Now apply Theorem 4-1 and obtain r0 = r0(σ, τ, q, f) > 0. Fix r ∈ E such
that r ≥ r0 . If

(

(n(r, aj)/A(θ1r))− 1
)

≤ 0 for (q − 1) values of j , then by (4-28)

there is nothing to prove. So let Q =
{

1 ≤ j ≤ q :
(

(n(r, aj)/A(θ1r)) − 1
)

> 0
}

for all j ∈ Q . We assume cardQ = q′ ≥ 2.

Again we apply Theorem 4-1, to the same function f , but using the set
{aj : j ∈ Q} = {a′

j} . Note that the same σ and τ , as for the {aj} , work for
{a′

j} . Theorem 4-1 yields r′0 = r′0(σ, τ, q′, f) . From (4-4) and (4-5) (v) we see that
we may choose r′0(σ, τ, q′, f) = r0(σ, τ, q, f) ; i.e. r′0 = r0 . So we have for r ∈ E ,
r ≥ r0 = r′0 , by (4-2),

∑

j∈Q
j 6=J

n(r, aj) ≤
[

q′ +
4KIb

(log 2)n−1
+ 2

]

A(16θ0r) ≤
[

q′ +
4KIb

(log 2)n−1
+ 2

]

A(θ1r);

i.e.,
∑

j∈Q
j 6=J

[n(r, aj)

A(θ1r)
− 1

]

≤
[

3 +
4KIb

(log 2)n−1

]

.

For j = J , since r ∈ E , we have from (4-28) that

n(r, aJ) ≤ 2A(θr) ≤ 2A(θ1r).

Hence
∑

j∈Q

[n(r, aj)

A(θ1r)
− 1

]

≤
[

4 +
4KIb

(log 2)n−1

]

= C1.

And by the definition of Q ,

q
∑

j=1

[n(r, aj)

A(θ1r)
− 1

]

+
≤ C1,

where r ∈ E , r ≥ r0 . The theorem is proved.
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