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Abstract. We study boundary properties of quasiconformal self-mappings depending on
complex dilatations. We give some new conditions for the corresponding quasisymmetric func-
tion to be asymptotically symmetric and obtain an explicit asymptotical representation for the
distortion ratio of boundary correspondence when the complex dilatation has directional limits.

1. Introduction

Let C be the extended complex plane. We shall denote the unit disk |z| < 1
by D , the unit sphere |z| = 1 by S1 and the upper half-plane Im z > 0 by H .

An orientation preserving A C L homeomorphism f is called quasiconformal

if it satisfies the Beltrami equation

(1.1) fz̄ = µ(z)fz a.e.

for some measurable complex function µ called the Beltrami differential or complex

dilatation with

(1.2) ess sup
G

|µ(z)| = ‖µ‖∞ ≤ k < 1.

If Q = (1 + k)/(1 − k) then f is called also Q -quasiconformal.
An increasing self-homeomorphism f of the real axis R is called quasisym-

metric if it can be extended to a quasiconformal mapping of the upper half-plane
H that fixes the point at infinity.

It is a well-known fundamental result that the boundary values of a Q -
quasiconformal self-mapping f of the upper half-plane preserving the point at
infinity satisfy the double sharp inequality (see [20, p. 81])

(1.3)
1

λ(Q)
≤

f(x + t) − f(x)

f(x) − f(x − t)
≤ λ(Q)
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for all real x and t 6= 0 with

λ(Q) =
1

(m−1
(

πQ/2)
)2 − 1

and m(r) from Grötzsch’s module theorem.
In 1956 Beurling and Ahlfors [4] proved the converse having shown that f is

quasisymmetric if for some constant M , 1 ≤ M < ∞ , the M -condition

(1.4)
1

M
≤

f(x + t) − f(x)

f(x) − f(x − t)
≤ M

is satisfied for every symmetric triple x − t , x and x + t in R .
Next in 1967 Carleson [6] considered quasiconformal self-mappings of H which

“are conformal at the boundary” in the sense that

(1.5) k(t) = ess sup
0<Im z≤t

|µ(z)| → 0, t → 0

and showed that the assumption

(1.6)

∫

0

k(t)α dt

t
< ∞

for α = 2 implies an absolutely continuous boundary correspondence f(x) , while
for α = 1, f(x) is continuously differentiable. He gave also counterexamples
in the case when (1.6) does not hold for α = 1 or α = 2, respectively. Then
Anderson, Becker and Lesley [2] investigated the same problems for quasiconformal
self-mappings of the disk D by methods of the theory of conformal mappings with
asymptotically conformal extension [3]. They have obtained also estimations of the
moduli of continuity of f ′(eit) for α = 1 and estimations of the mean oscillation
of ln |f ′(eit)| ∈ VMO(S1) for α = 2.

This paper is concerned with an investigation of symmetry and regularity
problems at a given point and on subsets of the complex plane for quasiconformal
mappings. It contains some new results related to asymptotical behavior of qua-
sisymmetric homeomorphisms. It is well-known by a principal result of Gehring
and Lehto [13] that a general quasiconformal mapping f , being Hölder continuous,
is differentiable only almost everywhere and it is necessary to require some addi-
tional restrictions on the complex dilatation µ(z) in order to make more precise
statements about the pointwise behaviour of the mapping. We shall choose the
upper half-plane as a main canonical domain and the limit

(1.7) lim
t→0

1

t2

∫∫

|z−x|≤t,z∈H

|µ(z) − νx(z)|α dmz = 0, α > 0
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as a condition for measuring the deviation for the complex dilatation µ(z) . Here
νx(z) , x ∈ M ⊆ R is an appropriate one-parameter family of the Beltrami differ-
entials. The assumptions we shall require are motivated by problems which arise
in the theory of convergence and compactness for quasiconformal mappings.

We first require (1.7) to hold for νx(z) = νx , x ∈ R , that is, νx(z) does not
depend on z and prove a result which implies a local asymptotical symmetry at
the point x for the corresponding quasisymmetric function

(1.8) lim
t→0

f(x + t) − f(x)

f(x) − f(x − t)
= 1.

The condition we impose on µ(z) does not imply the differentiability of f at the
point x even if the complex dilatation is continuous at this point.

Then we focus our attention to the study of a boundary correspondence under
the similar, but slightly less restrictive, requirement on µ(z) that (1.7) holds for
a function νx(z) depending on arg(z − x) only for any fixed x ∈ M ⊆ R . In this
case we prove the more general Theorem 2 about regularity and symmetry under
quasiconformal mappings. Note that a complex dilatation µ(z) having for fixed
x ∈ R and almost all θ , 0 ≤ θ ≤ π , finite limits in directions

(1.9) lim
t→0

µ(x + teiθ) = νx(eiθ)

satisfies the above restriction.
Finally, we apply special cases of the previous results to the study of the

boundary behaviour of quasiconformal self-homeomorphisms of the unit disk D .
Different analytic and geometric properties of quasisymmetric homeomorph-

isms have been investigated, for instance, by Gardiner and Sullivan [9], Gehring [10],
Douady and Earle [7], Fehlmann [8], Hayman [17] and Tukia [22]. Note also that
quasisymmetric homeomorphisms of an interval into R play an important role
in the theory of Riemann surfaces and of real one dimensional smooth dynamical
systems.

2. Main results

We begin with a result on asymptotical symmetry of quasisymmetric self-
homeomorphisms of the real axis R .

Theorem 1. Let f be a Q -quasiconformal self-mapping of the upper half-

plane H with f(∞) = ∞ and complex dilatation µ . If there exists a complex

number νx such that

(2.1) lim
t→0

1

t2

∫∫

|z−x|≤t,z∈H

|µ(z) − νx|
α dmz = 0
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for some α > 0 and fixed x ∈ R , then

(2.2) lim
t→0

t∈R\{0}

f(x + t) − f(x)

f(x) − f(x − t)
= 1.

Moreover, if the limit (2.1) is uniform with respect to the parameter x ∈ M ⊂ R

then (2.2) is also uniform in M .

In what follows FQ is the class of all Q -quasiconformal self-mappings f of the
extended complex plane C normalized with the conditions f(0) = 0, f(1) = 1,
f(∞) = ∞ .

Proof. Suppose that f is a Q -quasiconformal mapping of H onto itself,
normalized so that f(∞) = ∞ . Then we can extend f by reflection in the half-
plane Im z < 0 to obtain a Q -quasiconformal mapping of the complex plane C

with f(∞) = ∞ . The complex dilatation µ(z) = fz̄/fz will satisfy the symmetry
condition µ(z̄) = µ(z) almost everywhere in C .

Next, fix x ∈ R and introduce the family of quasiconformal mappings Φ(z, x, t)
= g(tz; x)/g(t; x) , where g(z; x) = f(x+z)−f(x) . It is easy to verify that µ(x+tz)
represents the complex dilatation for the mapping Φ(z, x, t) ∈ FQ . On the other

hand, the assumption (2.1) implies that µ(x+tz)
mes
−→ νx as t → 0, t > 0, z ∈ H . It

is well-known that the last assertion implies the existence of a sequence µ(x+ tnz)
which converges to νx almost everywhere.

Now we shall show that

(2.3) lim
t→0

Φ(z, x, t) = ωx(z)

for all z ∈ C , where

ωx(z) =











z + νxz̄

1 + νx
for Im z ≥ 0,

z + νxz̄

1 + νx
for Im z ≤ 0.

Suppose that (2.3) fails. Then there exists an ε > 0 and a sequence tn → 0
as n → ∞ such that for some z0 ∈ C

|Φ(z0, x, tn) − ωx(z0)| ≥ ε.

Without loss of generality we can assume also that the corresponding sequence
of quasiconformal mappings Φ(z, x, tn) ∈ FQ converges locally uniformly to some
function Φ(z, x) ∈ FQ and µ(x+tnz) , z ∈ H , converges to νx almost everywhere.
Now by the Bers–Bojarski convergence theorem (see [20, p. 187]) the complex
dilatation of the limit function Φ(z, x) ∈ FQ will agree with νx for almost all
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z ∈ {z : Im z ≥ 0} and, by symmetry, with νx for almost all z ∈ {z : Im z ≤ 0} .
Hence Φ(z, x) = ωx(z) . This contradicts the above assumption.

Setting z = −1 in (2.3) we complete the proof of the local variant of Theo-
rem 1 emphasizing by the same token the role of fundamental convergence theo-
rems in our considerations.

It is easy to see that Theorem 1 is the partial case of a more general Theo-
rem 2 below. However we decided to extract it as an independent statement to
call attention to the symmetry notion for quasisymmetric functions f : R → R ,
being expressed by the uniform condition (2.2) in connection with new remarkable
applications of the concept given by Gardiner and Sullivan [9].

Going over to the analysis of the above result we first note that if f is differ-
entiable at x ∈ M then evidently (2.2) holds. On the other hand, the following
example

f(z) = z(1 − log |z|), f(0) = 0

shows that even the continuity of the complex dilatation in a neighbourhood of a
prescribed point does not imply a differentiability of the corresponding quasicon-
formal mapping at this point. In connection with it the following statement may
have independent interest.

Corollary 1. Let f be a quasiconformal self-mapping of the upper half-plane

H with complex dilatation µ that can be extended to a function being continuous

uniformly in M ⊂ R . Then (2.2) holds uniformly in M .

Indeed, the convergence of the complex dilatation µ(z) to µ(x) = νx as z → x
uniformly with respect to x ∈ M implies that the limit (2.1) is also uniform in
M for any α > 0.

Denote by δ(t, x) the essential module of continuity for a complex dilatation
µ(z) extended by µ(x) at the prescribed point x ∈ R that is,

(2.4) δ(t, x) = ess sup
|z−x|≤t
Im z>0

|µ(z) − µ(x)|.

Corollary 2. If for some α > 0 the Dini condition

(2.5) lim
ε→0

∫ ε

0

δα(t, x)

t
dt = 0

holds uniformly with respect to x ∈ M then (2.2) holds also uniformly in x ∈ M .

The proof of Corollary 2 follows immediately from the evident inequalities

(2.6)

1

t2

∫∫

|z−x|≤t,z∈H

|µ(z) − µ(x)|α dmz ≤

∫∫

|z−x|≤t,z∈C

|µ(z) − µ(x)|α

|z − x|2
dmz

≤ 2π

∫

0

δα(t, x)

t
dt.
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Note that the intermediate integral has been introduced by Teichmüller, Wit-
tich, Belinskii and Lehto (see [20, p. 232]) to prove that its convergence for α ≤ 1
implies the differentiability of f at the point x . It can be shown that the uniform
convergence of the integral on M ⊂ R for α ≤ 1 implies the uniform differen-
tiability of f in M . Moreover, assumption (2.1) does not imply in general the
Teichmüller–Wittich–Belinskii–Lehto condition and the last one does not imply
the Dini condition (see [15], [16]).

Before giving the following principal statements we need two preliminary re-
sults. The first one deals with an explicit representation of normalized quasi-
conformal self-mappings of the complex plane C for a special class of complex
dilatations which is due to Schatz [21].

Proposition 1. Let ω be a quasiconformal self-mapping of the complex

plane normalized by the conditions ω(0) = 0 , ω(1) = 1 , ω(∞) = ∞ with complex

dilatation ν depending on arg z only. Then

(2.7) ω(z) =

{

|z| exp

(

i

∫ arg z

0

e2iθ − ν(eiθ)

e2iθ + ν(eiθ)
dθ

)}1/b

,

where

(2.8) b =
1

2π

∫ 2π

0

e2iθ − ν(eiθ)

e2iθ + ν(eiθ)
dθ.

The proof follows by straightforward verification.

Remark. The radial lines can be transformed by ω to spirals if and only if
Im b 6= 0. If Im b = 0 then all radial lines are translated to radial lines. Moreover,
the real axis and upper half-plane are preserved if and only if

(2.9) Re

∫ π

0

e2iθ − ν(eiθ)

e2iθ + ν(eiθ)
dθ = Re

∫ 2π

π

e2iθ − ν(eiθ)

e2iθ + ν(eiθ)
dθ.

Note that ν(e−iθ) = ν(eiθ) implies (2.9) and therefore b = Re c , where

(2.10) c =
1

π

∫ π

0

e2iθ − ν(eiθ)

e2iθ + ν(eiθ)
dθ.

Example. If ν = κ(z/z̄) , κ ∈ C , |κ| < 1, then ω is given by

(2.11) ω(z) =
z

|z|
|z|c0 ,

where

(2.12) c0 =
1 + κ

1 − κ
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is the corresponding complex parameter with positive real part.
If we set c0 = α − i , α > 0, we obtain a quasiconformal mapping of C

(2.13) h(reiθ) = rαei(θ−ln r)

mapping the lines arg z = const onto spirals. Note that such mappings have been
used by Gehring [12] to solve the Bers problem about the structure of the universal
Teichmüller space.

The following lemma connects some convergence and regularity problems for
quasiconformal mappings and may have an independent interest.

Let j ∈ J be an abstract parameter. Denote by ωj(z) quasiconformal map-
pings (2.7) with complex dilatations νj depending on arg z only.

Lemma. Let fj : C → C , fj(0) = 0 , j ∈ J , be a family of Q -quasiconformal

mappings with complex dilatations µj such that for some α > 0

(2.14) lim
t→0

1

t2

∫∫

|z|≤t

|µj(z) − νj(z)|α dmz = 0

uniformly with respect to j ∈ J . Then

(2.15) lim
t→0

t∈R\{0}

fj(tz)

fj(t)
= ωj(z), for all z ∈ C,

uniformly in j ∈ J .

The proof of the lemma will be a main objective of Section 3.

Theorem 2. Let f be a Q -quasiconformal self-mapping of the upper half-

plane H with f(∞) = ∞ and complex dilatation µ . If there exists a complex-

valued function νx(η) , x ∈ M ⊆ R , η ∈ S1 , such that for some α > 0

(2.16) lim
t→0

1

t2

∫∫

|z−x|≤t,z∈H

|µ(z) − νx(eiθ)|α dmz = 0

where θ = arg(z − x) , uniformly with respect to x ∈ M , then

(2.17) lim
t→0

t∈R\{0}

f(x + τt) − f(x)

f(x + t) − f(x)
= ωx(τ), for all τ ∈ R

uniformly with respect to x ∈ M . Here ωx(z) is given by (2.7) with

ν(eiθ) =

{

νx(eiθ) for 0 < θ < π,

νx(e−iθ) for −π < θ < 0.

Proof. Suppose that f is a Q -quasiconformal mapping of H onto itself
normalized so that f(∞) = ∞ . We shall assume f to be extended in the complex
plane by reflection.

Now set J = M ⊆ R , j = x ∈ M , fj(z) = f(x + z) − f(x) , ωj(z) = ωx(z) .
Applying the lemma to the family fj(z) yields the theorem.
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Corollary 3. Under the hypothesis of Theorem 2

(2.18) lim
t→0
t>0

f(x + t) − f(x)

f(x) − f(x − t)
= eπ Im c/ Re c,

(2.19) lim
t→0

t∈R\{0}

f(x + τt) − f(x)

f(x + t) − f(x)
= τ1/ Re c, for all τ > 0

uniformly with respect to x ∈ M ⊆ R .

Let ωx(z) is defined by (2.7). Then by straightforward computation it follows
that ωx(−1) = − exp{−π Im c/ Re c} and ωx(τ) = τ1/ Re c for τ > 0.

Corollary 4. Under the hypothesis of Theorem 2 the property of asymptot-

ical symmetry (2.2) holds if and only if Im c = 0 .

Corollary 5. Under the hypothesis of Theorem 1 we have c = 1 and there-

fore

(2.20) lim
t→0

t∈R\{0}

f(x + τt) − f(x)

f(x + t) − f(x)
= τ, for all τ > 0

uniformly with respect to x ∈ M ⊆ R .

Corollary 6. Let f be a Q -quasiconformal self-mapping of the upper half-

plane H with complex dilatation µ such that for fixed x ∈ M and almost all θ ,

0 ≤ θ ≤ π ,

(2.21) lim
t→0

µ(x + teiθ) = νx(eiθ)

uniformly with respect to x ∈ M . Then (2.17)–(2.20) hold also uniformly in M .

It is easy to show that the uniform assumption (2.21) implies the uniform
condition (2.16).

We complete this section with a result on boundary correspondence under
quasiconformal mappings of the unit disk onto itself. In analogy with the half-
plane model, an orientation-preserving self-homeomorphism f of the unit circle
S1 is called quasisymmetric if it can be extended to a quasiconformal mapping of
the unit disk D .

Theorem 3. Let f be a quasiconformal self-mapping of the unit disk D
with complex dilatation κ . If there exists a complex number ση such that

(2.22) lim
t→0

1

t2

∫∫

|ζ−η|≤t,ζ∈D

|κ(ζ) − ση|
α dmζ = 0
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for some α > 0 and fixed η = eiϕ ∈ S1 , then the quasisymmetric homeomorphism

f(eiθ) = eiΩ(θ) satisfies the following condition

(2.23) lim
τ→0

Ω(ϕ + τ) − Ω(ϕ)

Ω(ϕ) − Ω(ϕ − τ)
= 1.

Moreover, if the limit (2.22) is uniform with respect to a parameter η ∈ M ⊆ S1

then (2.23) is also uniform in M .

Proof. Let f be a quasiconformal self-mapping of the unit disk D . Then

(2.24) h(z) = −i ln f(eiz)

is the corresponding quasiconformal self-mapping of the upper half-plane H for
which all hypothesis of Theorem 1 are fulfilled. Indeed, writing f = A ◦h ◦A −1 ,
where A (z) = eiz , we deduce that

κ(ζ) =
(

µ
Az

Az

)

◦ A
−1(ζ).

Thus

µ(z) = −
eiz

eiz
κ(eiz)

and therefore
1

t2

∫∫

|z−x|≤t,z∈H

|µ(z) − νx|
α dmz ∼

1

t2

∫∫

|ζ−η|≤t,ζ∈D

|κ(ζ) − ση|
αdmζ

as t → 0. Now assertion (2.23) follows immediately from Theorem 1 being applied
to the function h(z) .

3. Proof of the lemma

The space FQ of normalized quasiconformal mappings of the complex plane C

with the topology of the locally uniform convergence is metrizable and sequentially
compact (see, for instance, [20, p. 71]).

Any metric ̺ defined on FQ is called a generating metric if the convergence
̺(fn, f) → 0 is equivalent to the locally uniform convergence fn → f . One of
such metrics is (see, e.g. [18])

(3.1) ̺(f, g) =

∞
∑

m=1

2−m ̺m(f, g)

1 + ̺m(f, g)

where

(3.2) ̺m(f, g) = max
|z|≤m

|f(z) − g(z)|.

Let MQ be the space of all complex dilatations µ for mappings f ∈ FQ . Any
metric r defined on MQ is called majorizing if the convergence r(µn, νn) → 0
implies ̺(fn, gn) → 0 for any generating metric ̺ on FQ and for the corresponding
mappings fn and gn ∈ FQ .
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Proposition 2. Let ̺ and r be generating and majorizing metrics on FQ

and MQ , respectively. Then r(µt,j , µj) → 0 as t → 0 uniformly with respect to

an abstract parameter j ∈ J implies the uniform convergence ̺(ft,j, fj) → 0 in

j ∈ J .

Indeed, suppose that there exist an ε > 0 and sequences tn → 0, jn ∈ J ,
such that ̺(gn, hn) ≥ ε , where gn = ftn,jn

, hn = fjn
, n = 1, 2, . . . . However

r(µn, νn) → 0 and therefore ̺(gn, hn) → 0. The last statement contradicts the
above assumption.

Proposition 3. For some α > 0 let

(3.3) r(µ, ν) =
∞
∑

m=1

2−m rm(µ, ν)

1 + rm(µ, ν)

where

(3.4) rm(µ, ν) =

∫∫

|z|≤m

|µ(z) − ν(z)|α dmz.

Then r(µ, ν) is a majorizing metric on MQ .

Proof. Assume that r(µn, νn) → 0 but ̺(fn, gn) ≥ ε > 0 for some generating
metric ̺ and some sequences fn and gn ∈ FQ . We may suppose also that fn →
f ∈ FQ , gn → g ∈ FQ .

Next we show that f ≡ g . By the Lebesgue convergence theorem r(µn, νn) →

0 is equivalent to µn − νn
mes
−→ 0 on MQ . Hence

φn(z) =
µn(z) − νn(z)

1 − µn(z)νn(z)

(gn)z

(gn)z

mes
−→ 0.

To continue the proof we need the following principal property of normalized Q -
quasiconformal mappings related with the area distortion. Let f ∈ FQ then for
each measurable set E ⊂ DR

mes
(

f(E)
)

≤ c(Q, R)
(

mes(E)
)δ(Q)

where DR = {z : |z| < R} and the constants c and δ depend only on Q and R
and Q , respectively (see, e.g. [5], [11], [14], [19]).

The above result implies that

κn = φn ◦ g−1
n

mes
−→ 0

where the κn represent the complex dilatations of the mappings hn = fn ◦ g−1
n ∈

FQ2 . Thus hn → h = f ◦ g−1 and simultaneously κn
mes
−→ 0. By the Bers–Bojarski

convergence theorem (see [20, p. 187]) we deduce that g = f . Therefore

̺(fn, gn) ≤ ̺(fn, f) + ̺(gn, f) → 0

as n → ∞ . The last contradicts the above assumption.
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Proof of the lemma. Let fj : C → C , fj(0) = 0, j ∈ J , be a family of
Q -quasiconformal mappings with complex dilatations µj . It is easy to verify
that µt,j(z) = µj(tz) represent the complex dilatations for the quasiconformal
mappings gt,j(z) = fj(tz)/fj(t) ∈ FQ, t ∈ R \ {0} . Fix any α > 0 and set
t = τm , z = τζ , in (2.14). Then we deduce that

lim
τ→0

∫∫

|ζ|≤m

|µτ,j(ζ) − νj(ζ)|α dmζ = 0

uniformly in j ∈ J for all m = 1, 2, . . . . Now by Propositions 2 and 3 gt,j(z) →
gj(z) ∈ FQ locally uniformly with respect to z ∈ C uniformly in j ∈ J . Here
gj(z) has the complex dilatation which agrees with νj(ζ) almost everywhere. By
the uniqueness theorem for the Beltrami equation gj(z) = ωj(z) . The lemma is
proved.
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