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Abstract. In this work we first generalize the projection result by K. Falconer and J. How-
royd concerning packing dimensions of projected measures on Rn to parametrized families of
transversal mappings between smooth manifolds and measures on them. After this we compute
the packing dimension of the natural projection of a probability measure which is invariant under
the geodesic flow on the unit tangent bundle of a two-dimensional Riemannian manifold.

1. Introduction

The behavior of the Hausdorff dimension, dimH , under projection-type map-
pings is well known. In the 1950’s Marstrand [Mar] proved that the Hausdorff
dimension of a planar set is preserved under typical orthogonal projections. In [K]
Kaufman verified the same result using potential theoretic methods, and in [Mat1]
Mattila generalized it to higher dimensions. For measures the analogous principle,
discovered by Kaufman [K], Mattila [Mat2], Hu and Taylor [HT], and Falconer
and Mattila [FM], can be formulated in the following way: If µ is a compactly
supported Radon measure on Rn , then for almost all V ∈ G(n,m)

dimH PV µ = dimH µ provided that dimH µ ≤ m.

On the other hand, if dimH µ > m , then

PV µ� H
m|V

for almost all V ∈ G(n,m). In addition, if the m -energy of µ is finite, then

PV µ� H
m|V with the Radon–Nikodym derivative in L2(V,H m|V )

for almost all V ∈ G(n,m). Here G(n,m) is the Grassmann manifold of all m -
dimensional linear subspaces of Rn , PV :Rn → V is the orthogonal projection
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onto V ∈ G(n,m), and PV µ is the image of µ under PV defined by the formula
PV µ(A) = µ(P−1

V A) for A ⊂ V . Moreover, by µ � ν we denote the absolute
continuity of a measure µ with respect to a measure ν , and µ|A is the restriction
of a measure µ to a set A , that is µ|A(B) = µ(A ∩ B).

In [FH], Falconer and Howroyd proved an analogous result for the packing
dimension, dimp , of projected measures. They showed that if µ is a finite Borel
measure on Rn , then

(1.1) dimp PV µ = dimm µ

for almost all V ∈ G(n,m), where dimm µ is a packing-type dimension defined by
using a certain m -dimensional kernel. This result tells that the packing dimension
is the same for almost all projections, but it may happen that dimm µ < dimp µ .

The above results are “almost all”-results giving no information about any
specific projection. However, as discovered by Ledrappier and Lindenstrauss [LL],
similar methods work for one particular projection. In [LL] they studied mea-
sures on the unit tangent bundle SM of a compact two-dimensional Riemannian
manifold M . They showed that, if µ is a probability measure on SM and µ is
invariant under the geodesic flow, then

(1) dimH Πµ = dimH µ , if dimH µ ≤ 2, and

(2) Πµ� H 2|M , if dimH µ > 2.

Here Π:SM →M is the natural projection. Ledrappier and Lindenstrauss proved
also that the Radon–Nikodym derivative of Πµ is an L2 -function, if µ has finite
α -energy for some α > 2.

Inspired by the results in [LL], in [JJLe] we reproved the above theorem and
showed that if the α -energy of µ is finite for some α > 2, then Πµ has fractional
derivatives of order γ in L2 for all γ < 1

2 (α − 2). To achieve this new proof we
used the generalized projection formalism introduced by Peres and Schlag in [PS].
Our proof also explains why this kind of projection result fails when the dimension
of the base manifold is greater than two.

In this paper we consider the natural question of how the packing dimension
of an invariant measure behaves under the natural projection. To achieve this, in
Section 3 we first generalize (1.1) to parametrized families of transversal mappings
between manifolds (Theorem 3.6). The methods of Falconer and Howroyd do not
directly work in our setting, but circumventing some technical problems eventually
leads to a bit easier proof. After this, in Section 4 we compute the packing di-
mension of Πµ , when the setting is similar to that in [LL] (Theorem 4.2). Finally,
in Section 5 we show that, unlike the Hausdorff dimension, the packing dimension
of a (locally) invariant measure may decrease under the projection even in the
two-dimensional case.
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2. Preliminaries and definitions

In the following definitions (X, dX) is a metric space, and B(x, r) is the open
ball with center at x ∈ X and radius r > 0.

Definition 2.1. Let µ be a finite Borel measure on X . The (lower) packing

dimension of µ is

dimp µ := sup
{

t ≥ 0 : lim inf
r→0

r−tµ
(

B(x, r)
)

= 0 for µ-a.a. x ∈ X
}

= inf
{

dimpA : A ⊂ X is a Borel set with µ(A) > 0
}

= µ- ess inf
x∈X

(

lim sup
r→0

log µ
(

B(x, r)
)

log r

)

,

and the upper packing dimension of µ is

dim∗
p µ := inf

{

t > 0 : lim inf
r→0

r−tµ
(

B(x, r)
)

> 0 for µ-a.a. x ∈ X
}

= inf
{

dimpA : A ⊂ X is a Borel set with µ(X \A) = 0
}

= µ- ess sup
x∈X

(

lim sup
r→0

logµ
(

B(x, r)
)

log r

)

.

As in [FH], for every k ∈ N we define a new dimension of a measure, which
may be regarded as a packing-type dimension defined in terms of a certain k -
dimensional kernel. For more properties of this k -dimension, see [FH].

Definition 2.2. Let µ be a finite Borel measure on X . For every x ∈ X ,
r > 0 and k ∈ N , we define

Fµk (x, r) :=

∫

X

min
{

1, rkdX(x, y)−k
}

dµ(y) = krk
∫ ∞

r

µ
(

B(x, h)
)

hk+1
dh,

where the last equality follows directly from Fubini’s theorem. Furthermore, we
define

dimk µ := sup
{

t ≥ 0 : lim inf
r→0

r−tFµk (x, r) = 0 for µ-a.a. x ∈ X
}

and
dim∗

k µ := inf
{

t > 0 : lim inf
r→0

r−tFµk (x, r) > 0 for µ-a.a. x ∈ X
}

for all k ∈ N .

The following theorem is from [FH, Corollary 3].

Theorem 2.3. Let ν be a finite Borel measure on Rn . Then

dimp ν = dimn ν and dim∗
p ν = dim∗

n ν.

Falconer and Howroyd proved also the following [FH, Theorem 6]:
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Theorem 2.4. Let ν be a finite Borel measure on Rn . Then

dimp PV ν = dimm ν and dim∗
p PV ν = dim∗

m ν

for γn,m -almost all V ∈ G(n,m) , where γn,m is the unique orthogonally invariant

probability measure on G(n,m) .

3. Packing dimensions and transversal mappings between manifolds

In this section we generalize Theorem 2.4 to families of transversal mappings.
First we notice that Theorem 2.3 holds also on manifolds.

Theorem 3.1. Let (N, dN ) be a smooth n -dimensional Riemannian mani-

fold equipped with the distance function dN induced by the Riemannian metric,

and let µ be a finite, compactly supported Borel measure on N . Then

dimp µ = dimn µ and dim∗
p µ = dim∗

n µ.

Proof. The proof of this theorem is the same as the proof of Theorem 2.3
[FH, Corollary 3]. The lemmas they need from [FM] are true also in our setting.

For the generalization of Theorem 2.4 we first prove a lemma which gives the
natural upper bound for the packing dimension of the image measure whenever
the mapping is Lipschitz continuous.

Lemma 3.2. Let (N, dN ) and (M,dM) be smooth Riemannian manifolds

with dimensions n and m , respectively. Let P :N →M be a Lipschitz continuous

mapping, and let µ be a finite Borel measure on N . Then

dimm Pµ ≤ dimm µ and dim∗
m Pµ ≤ dim∗

m µ.

Proof. We denote C := Lip(P ) + 1 ≥ 1. Let 0 ≤ t < dimm Pµ , and define

M(t) :=
{

u ∈M : lim inf
r→0

r−tFPµm (u, r) = 0
}

.

First we notice that by standard arguments u 7→ lim infr→0 r
−tFPµm (u, r) is a

Borel function and thus M(t) is a Borel set. From the definition of dimm Pµ we
get that µ

(

N \P−1
(

M(t)
))

= Pµ
(

M \M(t)
)

= 0. Now take x ∈ P−1
(

M(t)
)

⊂ N
and denote u := P (x) ∈M(t). Then

lim inf
r→0

r−tFµm(x, r) = lim inf
r→0

r−t
∫

N

min
{

1, rmdN (x, y)−m
}

dµ(y)

(∗)

≤ Cm lim inf
r→0

r−t
∫

N

min
{

1, rmdM
(

P (x), P (y)
)−m}

dµ(y)

= Cm lim inf
r→0

r−t
∫

P (N)

min
{

1, rmdM
(

P (x), v
)−m}

dPµ(v)

(∗∗)
= Cm lim inf

r→0
r−t

∫

M

min
{

1, rmdM (u, v)−m
}

dPµ(v)

= Cm lim inf
r→0

r−tFPµm (u, r) = 0,
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where (∗) follows from the fact that dM
(

P (x), P (y)
)

≤ CdN (x, y) and (∗∗) holds

because Pµ
(

M \ P (N)
)

= 0. Hence t ≤ dimm µ , and so dimm Pµ ≤ dimm µ
proving the first inequality. Next take 0 ≤ t < dim∗

m Pµ . Again by definition
µ
(

P−1
(

M(t)
))

= Pµ
(

M(t)
)

> 0. The same calculation as above shows that

lim inf
r→0

r−tFµm(x, r) = 0

for all x ∈ P−1
(

M(t)
)

and thus t ≤ dim∗
m µ . This proves the claim.

Next we introduce the setting we are going to work with. Let (L, dL) be
a smooth, bounded l -dimensional Riemannian manifold equipped with the dis-
tance function dL induced by the Riemannian metric, let (N, dN) be a smooth
n -dimensional Riemannian manifold, and let (M,dM) be a smooth m -dimensional
Riemannian manifold. We suppose that l, n ≥ m so that in our setting L
corresponds to G(n,m), and furthermore, N and M correspond to Rn and
Rm ∼= V ∈ G(n,m), respectively. Let P :L × N → M be a continuous func-
tion such that for all j ∈ {0, 1, . . .} there exists a constant Cj such that whenever
k1 + · · · + kl = j ,

‖∂k1λ1
· · ·∂kl

λl
P (λ, x)‖ ≤ Cj

for all (λ, x) ∈ L×N . Later on we will use the notation Pλ(x) := P (λ, x). The
basic assumptions we need are the following:

(1) There are finite collections {φ, V } and {ϕ,U} of charts on L and M , re-
spectively, with the following property: there exists R > 0 such that for all
λ ∈ L and u ∈M

B(λ,R) ⊂ V and B(u,R) ⊂ U

for some V and U .
(2) The Lipschitz constants of the mappings ϕ , ϕ−1 , φ , and φ−1 are uniformly

bounded from above by a positive constant K .
(3) Mapping T :

{

(x, y, λ) ∈ N2 × L : x 6= y, dM
(

Pλ(x), Pλ(y)
)

≤ R
}

→ Rm ,

Tx,y(λ) =
ϕ ◦ Pλ(x) − ϕ ◦ Pλ(y)

dN (x, y)

is transversal, i.e., there exists a constant CT > 0 such that

det
(

DTx,y(λ)
(

DTx,y(λ)
)T )

≥ C2
T whenever |Tx,y(λ)| ≤ CT .

We may refer to this property also by saying that P is transversal. Here AT

stands for the transpose of a matrix A . Moreover, we assume that

|∂λj
∂λk

(Tx,y)i(λ)| ≤ L <∞

for all j, k ∈ {1, . . . , l} , i ∈ {1, . . . ,m} , x, y ∈ N , and λ ∈ L .
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Throughout the rest of this section the manifolds (L, dL), (N, dN ) and (M,dM),
and the mapping P :L×N →M will satisfy the above assumptions.

Before stating the main result of this chapter we prove three short lemmas
which will help us in the proof of Theorem 3.6. Analogous lemmas can be found
in [FH], but since our setting is a bit more general, we have to modify their
methods. In particular, in our case we do not have the lower bound for the H l -
measure of the set of exceptional parameters λ (see inequality (3.1)). In fact,
circumventing this problem leads to a little bit simpler proof than the one in [FH].

Lemma 3.3. Let (L, dL) , (N, dN) , (M,dM) , and P :L × N → M be as

above, and let µ be a finite, compactly supported Borel measure on N . In addi-

tion, assume that P is transversal. Then there exist constants C ′ > 0 and r0 > 0
such that

C ′Fµm(x, r) ≥

∫

L

µλ
(

B
(

Pλ(x), r
))

dH l(λ)

whenever 0 < r < r0 . Here µλ := Pλµ .

Proof. We know that under our assumptions there exist constants C ′ > 0
and r0 > 0 such that

(3.1) H
l
{

λ ∈ L : dM
(

Pλ(x), Pλ(y)
)

≤ r
}

≤ C ′ min
{

1, rmdN (x, y)−m
}

for all 0 < r < r0 and distinct x, y ∈ N (see Lemma 2.1 in [JJN] for the proof).
Hence we see by Fubini’s theorem that

C ′Fµm(x, r) ≥

∫

N

H
l
{

λ ∈ L : dM
(

Pλ(x), Pλ(y)
)

≤ r
}

dµ(y)

=

∫

L

µ
{

y ∈ N : dM
(

Pλ(x), Pλ(y)
)

≤ r
}

dH l(λ)

=

∫

L

µ
(

P−1
λ

(

B
(

Pλ(x), r
)))

dH l(λ)

=

∫

L

µλ
(

B
(

Pλ(x), r
))

dH l(λ)

whenever 0 < r < r0 .

Lemma 3.4. Let (L, dL) , (N, dN) , (M,dM) , and P :L × N → M be as

above, and let µ be a finite, compactly supported Borel measure on N . In addi-

tion, assume that P is transversal. If lim infr→0 r
−tFµm(x, r) = 0 , then

lim inf
r→0

r−tµλ
(

B(Pλ(x), r)
)

= 0

for H l -almost all λ ∈ L , where µλ = Pλµ .
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Proof. Firstly, because

C ′Fµm(x, r) ≥

∫

L

µλ
(

B
(

Pλ(x), r
))

dH l(λ)

by Lemma 3.3, we have that

H
l
{

λ ∈ L : µλ
(

B
(

Pλ(x), r
))

> krt
}

≤ k−1r−tC ′Fµm(x, r)

for all r, k > 0. Now fix k > 0 and choose a strictly decreasing sequence rj → 0
such that

lim
j→∞

r−tj Fµm(x, rj) = 0.

Since

H
l
{

λ ∈ L : lim inf
r→0

r−tµλ
(

B
(

Pλ(x), r
))

> k
}

= H
l

(

∞
⋃

j=1

{

λ ∈ L : r−tµλ
(

B
(

Pλ(x), r
))

> k for all r ≤ rj
}

)

= lim
j→∞

H
l
{

λ ∈ L : r−tµλ
(

B
(

Pλ(x), r
))

> k for all r ≤ rj
}

≤ lim sup
j→∞

H
l
{

λ ∈ L : r−tj µλ
(

B
(

Pλ(x), rj
))

> k
}

≤ lim sup
j→∞

k−1r−tj C ′Fµm(x, rj) = 0,

we get that for all k > 0

lim inf
r→0

r−tµλ
(

B
(

Pλ(x), r
))

≤ k

for H l -almost all λ ∈ L . Thus the claim follows when we let k tend to 0 through
a countable sequence.

Lemma 3.5. Let (L, dL) , (N, dN) , (M,dM) , and P :L × N → M be as

above, and let µ be a finite, compactly supported Borel measure on N . In addi-

tion, assume that P is transversal. For all t ≥ 0 we define

E(t) =
{

x ∈ N : lim inf
r→0

r−tFµm(x, r) = 0
}

.

(a) If µ(N \E(t)) = 0 , then dimp µλ ≥ t for H
l -almost all λ ∈ L .

(b) If µ(E(t)) > 0 , then dim∗
p µλ ≥ t for H l -almost all λ ∈ L .
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Proof. As in Lemma 3.2 we see by standard methods that E(t) is a Borel
set. The proof of (a) is similar to that of Proposition 5(a) in [FH]. For the reader’s
convenience we will prove claim (b). By Lemma 3.4 for all x ∈ E(t)

lim inf
r→0

r−tµλ
(

B(Pλ(x), r)
)

= 0

for H l -almost all λ ∈ L . Therefore Fubini’s theorem implies that for H l -almost
all λ ∈ L

lim inf
r→0

r−tµλ
(

B(u, r)
)

= 0

for µλ -almost all u ∈ Pλ
(

E(t)
)

⊂M . Because

µλ
(

Pλ
(

E(t)
))

≥ µ
(

E(t)
)

> 0,

we have that for H l -almost all λ ∈ L

µλ

({

u ∈M : lim inf
r→0

r−tµλ
(

B(u, r)
)

= 0
})

> 0,

and so dim∗
p µλ ≥ t for H l -almost all λ ∈ L proving (b).

After these lemmas we get the main theorem almost for free.

Theorem 3.6. Let (L, dL) , (N, dN ) , (M,dM ) , and P :L × N → M be

as above, and let µ be a finite, compactly supported Borel measure on N . In

addition, assume that P is transversal. Then

dimp µλ = dimm µ and dim∗
p µλ = dim∗

m µ

for H l -almost all λ ∈ L , where µλ = Pλµ is the projected measure.

Proof. From Theorem 3.1 and Lemma 3.2 we immediately obtain that dimp µλ
≤ dimm µ and dim∗

p µλ ≤ dim∗
m µ for all λ ∈ L . Hence it is enough to show that

the reverse inequalities hold for H l -almost all λ ∈ L . Assume that 0 < t <
dimm µ . Then

lim inf
r→0

r−tFµm(x, r) = 0

for µ -almost all x ∈ N . By Lemma 3.5(a) dimp µλ ≥ t for H
l -almost all λ ∈ L .

Taking a countable sequence of t → dimp µ gives the first claim. Assume next
that 0 < t < dim∗

m µ . Then

lim inf
r→0

r−tFµm(x, r) = 0

in a set of points x of positive µ -measure. By Lemma 3.5(b) dim∗
p µλ ≥ t for H l -

almost all λ ∈ L . As above, this gives that H l{λ ∈ L : dimµλ < dimm µ} = 0,
proving the claim.

Remark 3.7. In all the theorems and lemmas in Section 3 it is possible to
replace (N, dN) by a closure of an open and bounded subset of such a manifold,
since essentially the only property we need is that the space is n -dimensional.
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4. The packing dimension of the projection of a measure

invariant under the geodesic flow

In this section we will move from “almost all”-results to the study of one
specific projection. The behavior of the Hausdorff dimension of a locally invariant
probability measure on the unit tangent bundle of a Riemannian surface under
the natural projection was studied in [LL] and [JJLe]. Those results tell us that
the Hausdorff dimension is preserved under the natural projection. Next we prove
an analogous theorem for the packing dimension of the projected measure. But
first we recall the definitions of the geodesic flow and the invariance of a measure
under the flow.

Definition 4.1. Let SM be the unit tangent bundle of a smooth, compact
Riemannian manifold M . For a given t ∈ R , the geodesic flow Ft:SM → SM is
a diffeomorphism defined by the condition

Ft(x, v) =
(

γ(x,v)(t), γ
′
(x,v)(t)

)

,

where γ(x,v) is the unique geodesic with initial conditions γ(x,v)(0) = x and
γ′(x,v)(0) = v for every (x, v) ∈ SM .

A measure µ on SM is invariant under the geodesic flow, if Ftµ = µ for
every t ∈ R , that is µ

(

F−1
t (A)

)

= µ(A) for A ⊂ SM .

The main result of this section is the following:

Theorem 4.2. Let M be a smooth, compact Riemannian surface, let µ be a

Radon probability measure on the unit tangent bundle SM , and let Π:SM →M
be the natural projection. If µ is invariant under the geodesic flow, then

dimp Πµ = dim2 µ.

Before going into the proof we fix our notation and prove some technical
lemmas. For further details see Section 3 in [JJLe].

The invariance of the measure µ implies that

µ =

K
∑

j=1

µj ,

where µj = ψ(νj ×L 1), ψ is a bi-Lipschitz mapping from a compact set Ĩ ⊂ R3

(basically Ĩ = [0, 1]3 ) to its image ψ(Ĩ) ⊂ SM , and νj is a probability measure on
[0, 1]2 for every j ∈ {1, . . . , K} . We call this kind of measures µj locally invariant.
Since

Π

( K
∑

j=1

µj

)

=

K
∑

j=1

Πµj and dimp

( K
∑

j=1

µj

)

= min
1≤j≤K

dimp µj ,
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it is enough to prove Theorem 4.2 for measures µj . So we fix some j ∈ {1, . . . , K}
and denote µ̃ := µj and ν := νj . In [JJLe] we proved that there exists a transver-
sal mapping P : [0, 1] × [0, 1]2 → R , (t, x) 7→ P (t, x) =: Pt(x) such that the
dimensional behavior of (Φ ◦ Π)µ̃ is similar to that of the measure µ′ defined by
the condition

∫

R2

f(x, t) dµ′(x, t) =

∫ 1

0

∫

R

f(x, t) dPtν(x) dL
1(t)

for all non-negative Borel functions f :R × [0, 1] → [0,∞] . Here Φ is a chart
defined on an open set U ⊂M such that [0, 1]2 ⊂ Φ(U).

Next we prove a lemma which gives us the desired lower bound for the packing
dimension of Πµ̃ .

Lemma 4.3. Suppose that for all t ∈ [0, 1] we have a compactly supported

Radon measure νt on R . Suppose that µ is a Radon measure on R× [0, 1] such

that
∫

R2

f(x, t) dµ(x, t) =

∫ 1

0

∫

R

f(x, t) dνt(x) dL
1(t)

for all non-negative Borel functions f :R × [0, 1] → R . Then, if dimp νt ≥ α for

L 1 -almost all t ∈ [0, 1] , we have that dimp µ ≥ α+ 1 .

Proof. The proof of this theorem is similar to the proof of the corresponding
result for the Hausdorff dimension, which can be found from [JJL, Lemma 3.4].
One essential part of the proof is the fact that since PV ⊥µ � H 1|V ⊥ (see
Lemma 3.4 in [JJL]),

(4.1) H
1- ess inf

a∈V ⊥

{

dimp µV,a : µV,a 6= 0
}

≤ dimp µ− 1,

where V = x -axis, V ⊥ is the orthogonal complement of V , and µV,a is the slice
of measure µ by the affine subspace Va = V + a , a ∈ V ⊥ . For the definition of
these slices see [Mat3, Chapter 10]. Inequality (4.1) in turn follows basically from
the definition of the packing dimension and from Lemma 5.1 in [F], which says
that for every A ⊂ Rn and subspace V ∈ G(n, n−m)

dimp(A ∩ Va) ≤ max{dimpA−m, 0}

for H m -almost all a ∈ V ⊥ .

Lemma 4.4. We have

dimp(Φ ◦ Π)µ̃ = dim2 µ̃

Proof. First we notice that

(4.2) dim2 µ̃ = dim1 ν + 1.
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Namely, since ψ is a bi-Lipschitz mapping, we have that

F ν1 (y, r) = r

∫ ∞

r

ν
(

B(y, h)
)

h2
dh = r

∫ ∞

r

ν
(

B(y, h)
)

· h

h3
dh

� r

∫ ∞

r

(ν × L )
(

B
(

(y, s), h
))

h3
dh

� r

∫ ∞

r

ψ(ν × L )
(

B
(

ψ(y, s), h
))

h3
dh

�
F
ψ(ν×L )
2

(

ψ(y, s), r
)

r
=
F µ̃2

(

ψ(y, s), r
)

r

for all (y, s) ∈ Ĩ and r > 0. Equation (4.2) follows from this equality and the
definition of the image measure. By the notation A � B we mean that there
exists a constant c > 0 such that A/c ≤ B ≤ cA . Above this constant does not
depend on r .

Theorem 3.6 tells us that dimp Ptν = dim1 ν for L 1 -almost all t ∈ [0, 1],
and so by Lemma 4.3 and equality (4.2), dimp(Φ ◦ Π)µ̃ ≥ dim1 ν + 1 = dim2 µ̃ .
On the other hand, by Theorem 3.1 and Lemma 3.2

dimp(Φ ◦ Π)µ̃ = dim2(Φ ◦ Π)µ̃ ≤ dim2 µ̃

proving the claim.

Proof of Theorem 4.2. Theorem 4.2 follows directly from the previous lemma,
since Φ does not change the dimension as a bi-Lipschitz mapping.

5. An example of a locally invariant measure

whose packing dimension decreases under the projection

While the Hausdorff dimension of an invariant measure is preserved under the
natural projection in the two-dimensional case, the packing dimension may change
when the measure is projected to the base manifold. An example showing that
the packing dimension of a locally invariant measure can really decrease under the
projection can be obtained by using the measure of Example 5.1 in [FM]. In that
example Falconer and Mattila constructed for every 0 < d < s < 2, d < 1 a finite,
compactly supported measure νs,d on [0, 1]2 , whose packing dimension is s , and

dim1 νs,d =
s
(

1 − 1
2
d
)

1 + 1
2
s− d

< s.

Using the similar notation as in the previous section we define

µ̃ := ψ(νs,d × L
1),
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in which case µ̃ is a locally invariant measure on SM and

dimp Πµ̃ = dim2 µ̃ = dim1 νs,d + 1 < s+ 1 = dimp µ̃.

Remark 5.1. The example above suggests the existence of a globally invari-
ant measure whose dimension decreases under the projection, but the construction
of such a measure does not seem to be quite simple.
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