FACTORING DERIVATIVES OF FUNCTIONS IN THE NEVANLINNA AND SMIRNOV CLASSES

Konstantin M. Dyakonov

ICREA and Universitat de Barcelona, Departament de Matemàtica Aplicada i Anàlisi
Gran Via 585, E-08007 Barcelona, Spain; konstantin.dyakonov@icrea.cat

Abstract

We prove that, given a function f in the Nevanlinna class \mathcal{N} and a positive integer n, there exist $g \in \mathcal{N}$ and $h \in$ BMOA such that $f^{(n)}=g h^{(n)}$. We may choose g to be zero-free, so it follows that the zero sets for the class $\mathcal{N}^{(n)}:=\left\{f^{(n)}: f \in \mathcal{N}\right\}$ are the same as those for $\mathrm{BMOA}^{(n)}$. Furthermore, while the set of all products $g h^{(n)}$ (with g and h as above) is strictly larger than $\mathcal{N}^{(n)}$, we show that the gap is not too large, at least when $n=1$. Precisely speaking, the class $\left\{g h^{\prime}: g \in \mathcal{N}, h \in \mathrm{BMOA}\right\}$ turns out to be the smallest ideal space containing $\left\{f^{\prime}: f \in \mathcal{N}\right\}$, where "ideal" means invariant under multiplication by H^{∞} functions. Similar results are established for the Smirnov class \mathcal{N}^{+}.

1. Introduction and results

Let $\mathcal{H}(\mathbf{D})$ stand for the set of holomorphic functions on the disk $\mathbf{D}:=\{z \in \mathbf{C}$: $|z|<1\}$. Given a class $X \subset \mathcal{H}(\mathbf{D})$ and an integer $n \in \mathbf{N}:=\{1,2, \ldots\}$, we write

$$
X^{(n)}:=\left\{f^{(n)}: f \in X\right\},
$$

where $f^{(n)}$ is the nth derivative of f. When $n=1$, we also use the notation X^{\prime} instead of $X^{(1)}$. Further, we denote by $\mathcal{Z}(X)$ the collection of zero sets for X; a (discrete) subset E of \mathbf{D} will thus belong to $\mathcal{Z}(X)$ if and only if $E=\{z \in \mathbf{D}: f(z)=0\}$ for some non-null function $f \in X$. Now, if X and Y are subclasses of $\mathcal{H}(\mathbf{D})$, we put

$$
X \cdot Y:=\{f g: f \in X, g \in Y\}
$$

Finally, a vector space X contained in $\mathcal{H}(\mathbf{D})$ is said to be ideal if

$$
H^{\infty} \cdot X \subset X,
$$

where, as usual, H^{∞} is the space of bounded holomorphic functions on \mathbf{D}.
Our starting point is a result of Cohn and Verbitsky [3] which asserts, or rather implies, that

$$
\begin{equation*}
\left(H^{p}\right)^{(n)}=H^{p} \cdot \mathrm{BMOA}^{(n)} \tag{1.1}
\end{equation*}
$$

whenever $0<p<\infty$ and $n \in \mathbf{N}$. Here, we write H^{p} for the classical (holomorphic) Hardy spaces on the disk, and BMOA for the "analytic subspace" of BMO $=\mathrm{BMO}(\mathbf{T})$, the space of functions with bounded mean oscillation on the circle $\mathbf{T}:=\partial \mathbf{D}$. Precisely speaking, BMOA can be defined as $H^{1} \cap \mathrm{BMO}$; as to the definitions of (and background information on) H^{p} and BMO , the reader will find these standard matters in [5, Chapters II and VI].

[^0]For $n=1$, identity (1.1) was first obtained in Cohn's earlier paper [2]. It was then extended in [3] to higher order (possibly fractional) derivatives and still further; indeed, more general factorization theorems involving tent spaces - and Triebel spaces - were actually established there. It was also shown in [3] that, when factoring $f^{(n)}$ for $f \in H^{p}$ in the sense of (1.1), one may choose the H^{p} factor on the right to be an outer function. As a consequence, one sees that

$$
\begin{equation*}
\mathcal{Z}\left(\left(H^{p}\right)^{(n)}\right)=\mathcal{Z}\left(\mathrm{BMOA}^{(n)}\right) \tag{1.2}
\end{equation*}
$$

In particular, for any fixed n, the zero sets for $\left(H^{p}\right)^{(n)}$ are the same for all $p \in$ $(0, \infty)$. This last fact was contrasted in [3] with the Bergman space situation, where different A^{p} spaces happen to have different zero sets; see [7]. We wish to add, in this connection, that a similar Bergman-type phenomenon (different zero sets for different p 's) is also encountered in certain "small" H^{p}-related spaces; namely, it occurs [4] for the star-invariant subspaces $H^{p} \cap \theta \overline{H_{0}^{p}}$ associated with an inner function θ.

Also related to (1.1), in the case $n=1$, is Aleksandrov and Peller's work from [1]. There, for a given $f \in H^{p}$, a weak factorization $f^{\prime}=\sum_{j=1}^{m} g_{j} h_{j}^{\prime}$ was constructed with suitable $g_{j} \in H^{p}$ and $h_{j} \in H^{\infty}$. This was done with $m=2$ for $1<p<\infty$, with $m=4$ for $p=1$, and with a certain larger m for $0<p<1$. Yet another weak factorization theorem from [1], which establishes a connection between BMOA^{\prime} and $\left(H^{\infty}\right)^{\prime}$, will be employed in Section 4 below.

The purpose of this paper is to find out whether-and/or to which extent - the (strong) factorization theorem (1.1) carries over to the Nevanlinna class \mathcal{N}, or the Smirnov class \mathcal{N}^{+}, in place of H^{p}.

Let us recall that \mathcal{N} is defined as the set of functions $f \in \mathcal{H}(\mathbf{D})$ with

$$
\sup _{0<r<1} \int_{\mathbf{T}} \log ^{+}|f(r \zeta)||d \zeta|<\infty,
$$

while \mathcal{N}^{+}is formed by those $f \in \mathcal{N}$ which satisfy

$$
\lim _{r \rightarrow 1^{-}} \int_{\mathbf{T}} \log ^{+}|f(r \zeta)||d \zeta|=\int_{\mathbf{T}} \log ^{+}|f(\zeta)||d \zeta| .
$$

Equivalently, the elements of \mathcal{N} (resp., \mathcal{N}^{+}) are precisely the ratios u / v, with $u, v \in$ H^{∞} and with v nonvanishing (resp., outer) on \mathbf{D}; for this and other characterizations of the two classes, see [5, Chapter II].

As far as factorization theorems of the form (1.1) are concerned, we can hardly expect the behavior of \mathcal{N} or \mathcal{N}^{+}to mimic that of H^{p} too closely. In fact, as we shall soon explain, it is the "easy" part of (1.1), i.e., the inclusion

$$
\begin{equation*}
\left(H^{p}\right)^{(n)} \supset H^{p} \cdot \mathrm{BMOA}^{(n)} \tag{1.3}
\end{equation*}
$$

that admits no extension to the Nevanlinna or Smirnov setting. Meanwhile, we remark that (1.3) is indeed easy to deduce, at least for $p=2$, from the (not so easy, but readily available) descriptions of $\left(H^{p}\right)^{(n)}$ and $\mathrm{BMOA}^{(n)}$ as the appropriate Triebel spaces; see [11]. One of these tells us that, for $\varphi \in \mathcal{H}(\mathbf{D})$,

$$
\varphi \in\left(H^{p}\right)^{(n)} \Longleftrightarrow \int_{\mathbf{T}}\left(\int_{0}^{1}|\varphi(r \zeta)|^{2}(1-r)^{2 n-1} d r\right)^{p / 2}|d \zeta|<\infty
$$

for all $n \in \mathbf{N}$ and $0<p<\infty$, a fact that has no counterpart for \mathcal{N} or \mathcal{N}^{+}. The other, which involves a Carleson measure characterization of BMOA, will be mentioned in Section 2 below.

Now, to see that the \mathcal{N} and \mathcal{N}^{+}versions of (1.3) actually break down, already for $n=1$, one may recall results of Hayman [6] and Yanagihara [12] saying that neither \mathcal{N} nor \mathcal{N}^{+}is invariant with respect to integration. More precisely, Hayman gave an example of a function $f \in \mathcal{N}$ whose antiderivative $F(z):=\int_{0}^{z} f(\zeta) d \zeta$ is not in \mathcal{N}, and Yanagihara refined this by showing that F need not be in \mathcal{N} even for $f \in \mathcal{N}^{+}$. Consequently, \mathcal{N}^{+}is not contained in \mathcal{N}^{\prime}, whence a fortiori

$$
\begin{equation*}
\mathcal{N} \not \subset \mathcal{N}^{\prime} \quad \text { and } \quad \mathcal{N}^{+} \not \subset\left(\mathcal{N}^{+}\right)^{\prime} \tag{1.4}
\end{equation*}
$$

Since $\mathcal{N} \cdot \mathrm{BMOA}^{\prime}\left(\right.$ resp., $\left.\mathcal{N}^{+} \cdot \mathrm{BMOA}^{\prime}\right)$ contains \mathcal{N} (resp., \mathcal{N}^{+}), we readily deduce from (1.4) that

$$
\begin{equation*}
\mathcal{N} \cdot \mathrm{BMOA}^{\prime} \not \subset \mathcal{N}^{\prime} \text { and } \mathcal{N}^{+} \cdot \mathrm{BMOA}^{\prime} \not \subset\left(\mathcal{N}^{+}\right)^{\prime} \tag{1.5}
\end{equation*}
$$

A similar conclusion holds for higher order derivatives as well.
We prove, however, that the "difficult" part of (1.1), i.e., the inclusion

$$
\begin{equation*}
\left(H^{p}\right)^{(n)} \subset H^{p} \cdot \mathrm{BMOA}^{(n)} \tag{1.6}
\end{equation*}
$$

does remain valid with either \mathcal{N} or \mathcal{N}^{+}in place of H^{p}.
Theorem 1.1. For each $n \in \mathbf{N}$, we have

$$
\mathcal{N}^{(n)} \subset \mathcal{N} \cdot \mathrm{BMOA}^{(n)} \quad \text { and } \quad\left(\mathcal{N}^{+}\right)^{(n)} \subset \mathcal{N}^{+} \cdot \mathrm{BMOA}^{(n)} .
$$

Moreover, given $f \in \mathcal{N}$ (resp., $f \in \mathcal{N}^{+}$), one can find a zero-free function $g \in \mathcal{N}$ (resp., an outer function $g \in \mathcal{N}^{+}$) and an $h \in$ BMOA such that $f^{(n)}=g h^{(n)}$.

It should be mentioned that our method also applies to the meromorphic Nevanlinna class $\mathcal{N}_{\text {mer }}$, defined as the set of quotients u / v, where $u, v \in H^{\infty}$ and v is merely required to be non-null. In fact, a glance at our proof of Theorem 1.1 will reveal that if the original function f is of the form F / I, with $F \in \mathcal{N}^{+}$and I inner, then we may take $g=G / I^{n+1}$, with G outer. And again, just as in the H^{p} setting, our factorization theorem yields information on the zero sets.

Corollary 1.2. We have

$$
\mathcal{Z}\left(\mathcal{N}^{(n)}\right)=\mathcal{Z}\left(\mathrm{BMOA}^{(n)}\right), \quad n \in \mathbf{N} .
$$

Indeed, Theorem 1.1 shows that every zero set for $\mathcal{N}^{(n)}$ is a zero set for $\mathrm{BMOA}^{(n)}$, while the converse is immediate from the fact that $\mathrm{BMOA} \subset \mathcal{N}$. Furthermore, since \mathcal{N}^{+}lies between BMOA and \mathcal{N}, as does every H^{p} with $0<p<\infty$, Corollary 1.2 obviously implies the identity

$$
\mathcal{Z}\left(\left(\mathcal{N}^{+}\right)^{(n)}\right)=\mathcal{Z}\left(\mathrm{BMOA}^{(n)}\right)
$$

and also (1.2).
Finally, restricting ourselves to the case $n=1$, we wish to take a closer look at the inclusion

$$
\mathcal{N}^{\prime} \subset \mathcal{N} \cdot \mathrm{BMOA}^{\prime}
$$

from Theorem 1.1, along with its \mathcal{N}^{+}counterpart. We know from (1.5) that the inclusion is proper, and we now stress an important point of distinction between the two sides. Namely, the right-hand side, $\mathcal{N} \cdot \mathrm{BMOA}^{\prime}$, is ideal (i.e., invariant under
multiplication by H^{∞} functions), whereas the left-hand side, \mathcal{N}^{\prime}, is not. Moreover, the space \mathcal{N}^{\prime} is highly nonideal in the sense that even the identity function z is not a multiplier thereof! (Otherwise, the formula

$$
g=(z g)^{\prime}-z g^{\prime}, \quad g \in \mathcal{N}
$$

would imply that \mathcal{N} is contained in \mathcal{N}^{\prime}, which we know is false.) A similar remark applies to $\left(\mathcal{N}^{+}\right)^{\prime}$.

Our last result states, then, that $\mathcal{N} \cdot \mathrm{BMOA}^{\prime}$ is actually the smallest ideal space containing \mathcal{N}^{\prime}, and that the same is true in the \mathcal{N}^{+}setting.

Theorem 1.3. (a) The class $\mathcal{N} \cdot \mathrm{BMOA}^{\prime}$ is the ideal hull of \mathcal{N}^{\prime}. In other words, $\mathcal{N} \cdot \mathrm{BMOA}^{\prime}$ is an ideal vector space that contains \mathcal{N}^{\prime} and is contained in every ideal space X with $\mathcal{N}^{\prime} \subset X$.
(b) Similarly, $\mathcal{N}^{+} \cdot \mathrm{BMOA}^{\prime}$ is the ideal hull of $\left(\mathcal{N}^{+}\right)^{\prime}$.

Now let us turn to the proofs.

2. Preliminaries

A couple of lemmas will be needed.
Lemma 2.1. Let $k \geq 0$ and $l \geq 1$ be integers. If $\varphi \in \mathrm{BMOA}^{(l)}$ and ψ is a function in $\mathcal{H}(\mathbf{D})$ satisfying

$$
\begin{equation*}
\psi(z)=O\left((1-|z|)^{-k}\right), \quad z \in \mathbf{D} \tag{2.1}
\end{equation*}
$$

then $\varphi \psi \in \mathrm{BMOA}^{(k+l)}$.
Proof. It is known (see, e.g., $[8,10,11])$ that a function $F \in \mathcal{H}(\mathbf{D})$ will be in $\mathrm{BMOA}^{(n)}$, with $n \in \mathbf{N}$, if and only if the measure $|F(z)|^{2}(1-|z|)^{2 n-1} d x d y$ (where $z=x+i y)$ is a Carleson measure. The required result follows from this immediately, since (2.1) yields

$$
|\varphi(z) \psi(z)|^{2}(1-|z|)^{2(k+l)-1} \leq \mathrm{const} \cdot|\varphi(z)|^{2}(1-|z|)^{2 l-1}
$$

for all $z \in \mathbf{D}$.
When $k=0$, the above lemma reduces to saying that

$$
\begin{equation*}
H^{\infty} \cdot \mathrm{BMOA}^{(n)} \subset \mathrm{BMOA}^{(n)} \tag{2.2}
\end{equation*}
$$

for all $n \in \mathbf{N}$; in other words, $\mathrm{BMOA}^{(n)}$ is an ideal space. This in turn leads to the next observation.

Lemma 2.2. For each $n \in \mathbf{N}$, the sets $\mathcal{N} \cdot \mathrm{BMOA}^{(n)}$ and $\mathcal{N}^{+} \cdot \mathrm{BMOA}^{(n)}$ are ideal vector spaces.

Proof. It is clear that the two sets are invariant under multiplication by H^{∞} functions, but maybe not quite obvious that they are vector spaces. It is the linearity property

$$
f_{1}, f_{2} \in \mathcal{N} \cdot \mathrm{BMOA}^{(n)} \Longrightarrow f_{1}+f_{2} \in \mathcal{N} \cdot \mathrm{BMOA}^{(n)}
$$

(and a similar fact with \mathcal{N}^{+}in place of \mathcal{N}) that should be verified. To this end, we write

$$
f_{j}=\frac{u_{j}}{v_{j}} \cdot w_{j}^{(n)} \quad(j=1,2)
$$

where $u_{j}, v_{j} \in H^{\infty}$ and $w_{j} \in \mathrm{BMOA}$, and where v_{j} is zero-free (resp., outer if the f_{j} 's are from $\left.\mathcal{N}^{+} \cdot \mathrm{BMOA}^{(n)}\right)$. Note that

$$
f_{1}+f_{2}=\frac{1}{v_{1} v_{2}} \cdot\left(u_{1} v_{2} w_{1}^{(n)}+u_{2} v_{1} w_{2}^{(n)}\right) .
$$

The two terms in brackets, and hence their sum, will be in $\mathrm{BMOA}^{(n)}$ by virtue of (2.2), while the factor $1 /\left(v_{1} v_{2}\right)$ will be in \mathcal{N} (resp., in \mathcal{N}^{+}).

3. Proof of Theorem 1.1

We treat the case of \mathcal{N} first. Take $f \in \mathcal{N}$ and write $f=u / v$, where $u, v \in H^{\infty}$ and v has no zeros in \mathbf{D}. We have then

$$
\begin{equation*}
f^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(n-k)}(1 / v)^{(k)} . \tag{3.1}
\end{equation*}
$$

For each $k \in\{0, \ldots, n\}$, Faà di Bruno's formula (see [9, Chapter 3]) yields

$$
\begin{equation*}
\left(\frac{1}{v}\right)^{(k)}=\sum C\left(m_{1}, \ldots, m_{k}\right) v^{-m_{1}-\cdots-m_{k}-1} \prod_{j=1}^{k}\left(v^{(j)}\right)^{m_{j}} \tag{3.2}
\end{equation*}
$$

where the sum is over the k-tuples (m_{1}, \ldots, m_{k}) of nonnegative integers satisfying

$$
\begin{equation*}
m_{1}+2 m_{2}+\cdots+k m_{k}=k \tag{3.3}
\end{equation*}
$$

and where

$$
C\left(m_{1}, \ldots, m_{k}\right)=(-1)^{m_{1}+\cdots+m_{k}} \frac{\left(m_{1}+\cdots+m_{k}\right)!}{m_{1}!\ldots m_{k}!} \frac{k!}{1!^{m_{1}} \ldots k!^{m_{k}}} .
$$

For any fixed multiindex $\left(m_{1}, \ldots, m_{k}\right)$ as above, we clearly have

$$
\begin{equation*}
v^{-m_{1}-\cdots-m_{k}-1}=v^{-n-1} \cdot v^{n-m_{1}-\cdots-m_{k}}, \tag{3.4}
\end{equation*}
$$

the last factor on the right being bounded. Indeed,

$$
\begin{equation*}
v^{n-m_{1}-\cdots-m_{k}} \in H^{\infty}, \tag{3.5}
\end{equation*}
$$

since it follows from (3.3) that $n-m_{1}-\cdots-m_{k} \geq 0$. We further observe that, for $j \in \mathbf{N}$,

$$
\begin{equation*}
v^{(j)}(z)=O\left((1-|z|)^{-j}\right), \quad z \in \mathbf{D} \tag{3.6}
\end{equation*}
$$

(because $v \in H^{\infty}$), and this implies together with (3.3) that

$$
\begin{equation*}
\prod_{j=1}^{k}\left[v^{(j)}(z)\right]^{m_{j}}=O\left((1-|z|)^{-k}\right), \quad z \in \mathbf{D} \tag{3.7}
\end{equation*}
$$

Combining (3.2) and (3.4), we see that the k th summand in (3.1) takes the form $v^{-n-1} w_{k}$, where

$$
\begin{equation*}
w_{k}:=\binom{n}{k} \sum C\left(m_{1}, \ldots, m_{k}\right) u^{(n-k)} v^{n-m_{1}-\cdots-m_{k}} \prod_{j=1}^{k}\left(v^{(j)}\right)^{m_{j}} \tag{3.8}
\end{equation*}
$$

the sum is understood as in (3.2). We want to show that $w_{k} \in \mathrm{BMOA}^{(n)}$, and our plan is to check the corresponding inclusion for each individual term in (3.8). Thus, we claim that the function

$$
\Phi_{m_{1}, \ldots, m_{k}}:=u^{(n-k)} v^{n-m_{1}-\cdots-m_{k}} \prod_{j=1}^{k}\left(v^{(j)}\right)^{m_{j}}
$$

satisfies

$$
\begin{equation*}
\Phi_{m_{1}, \ldots, m_{k}} \in \mathrm{BMOA}^{(n)} \tag{3.9}
\end{equation*}
$$

whenever $0 \leq k \leq n$ and the m_{j} 's are related by (3.3).
First let us verify (3.9) in the case $k \leq n-1$. To this end, we notice that

$$
u^{(n-k)} \in\left(H^{\infty}\right)^{(n-k)} \subset \mathrm{BMOA}^{(n-k)},
$$

where $n-k \geq 1$, while

$$
[v(z)]^{n-m_{1}-\cdots-m_{k}} \prod_{j=1}^{k}\left[v^{(j)}(z)\right]^{m_{j}}=O\left((1-|z|)^{-k}\right), \quad z \in \mathbf{D}
$$

by virtue of (3.5) and (3.7). The validity of (3.9) is then guaranteed by Lemma 2.1.
Now if $k=n$, then the multiindices involved are of the form $\left(m_{1}, \ldots, m_{n}\right)$ with $\sum_{j=1}^{n} j m_{j}=n$. For any such multiindex, at least one of the m_{j} 's (say, m_{l} with an $l \in\{1, \ldots, n\})$ must be nonzero, so that $m_{l} \geq 1$ and

$$
\begin{equation*}
l\left(m_{l}-1\right)+\sum_{1 \leq j \leq n, j \neq l} j m_{j}=n-l . \tag{3.10}
\end{equation*}
$$

Consider the factorization

$$
\Phi_{m_{1}, \ldots, m_{n}}=v^{(l)} \cdot\left\{u v^{n-m_{1}-\cdots-m_{n}}\left(v^{(l)}\right)^{m_{l}-1} \prod_{1 \leq j \leq n, j \neq l}\left(v^{(j)}\right)^{m_{j}}\right\}
$$

The first factor, $v^{(l)}$, is then in $\left(H^{\infty}\right)^{(l)}$ and hence in $\mathrm{BMOA}^{(l)}$, while the second factor (the one in curly brackets) is $O\left((1-|z|)^{-n+l}\right)$. The latter estimate is due to (3.6) and (3.10), coupled with the fact that u and v are in H^{∞}. Applying Lemma 2.1 to the current factorization, we arrive at (3.9), this time with $k=n$.

Now that (3.9) is known to be true, we infer that the functions w_{k} from (3.8) are all in $\mathrm{BMOA}^{(n)}$, whence obviously $\sum_{k=0}^{n} w_{k} \in \mathrm{BMOA}^{(n)}$. Recalling that

$$
f^{(n)}=v^{-n-1} \sum_{k=0}^{n} w_{k},
$$

we finally conclude that $f^{(n)}$ can be written as $g h^{(n)}$, where $g:=v^{-n-1} \in \mathcal{N}$ and h is a BMOA function satisfying $h^{(n)}=\sum_{k=0}^{n} w_{k}$.

The case of \mathcal{N}^{+}is similar. This time, v is taken to be an outer function in H^{∞}, so $g=v^{-n-1}$ will be an outer function in \mathcal{N}^{+}.

4. Proof of Theorem 1.3

We shall only prove (a), the proof of (b) being similar. We know from Lemma 2.2 that $\mathcal{N} \cdot \mathrm{BMOA}^{\prime}$ is an ideal space. Furthermore, Theorem 1.1 tells us that $\mathcal{N} \cdot \mathrm{BMOA}^{\prime}$ contains \mathcal{N}^{\prime}. It remains to verify that, whenever X is an ideal space with $\mathcal{N}^{\prime} \subset X$,
we necessarily have

$$
\begin{equation*}
\mathcal{N} \cdot \mathrm{BMOA}^{\prime} \subset X \tag{4.1}
\end{equation*}
$$

Take any $g \in \mathcal{N}$ and $h \in H^{\infty}$. Note that

$$
\begin{equation*}
g h^{\prime}=(g h)^{\prime}-g^{\prime} h, \tag{4.2}
\end{equation*}
$$

where both terms on the right are in X. Indeed, $(g h)^{\prime}$ is obviously in \mathcal{N}^{\prime} and hence in X, while the inclusion $g^{\prime} h \in X$ is due to the facts that $g^{\prime} \in \mathcal{N}^{\prime} \subset X$ and $h X \subset X$ (recall that X is ideal). It now follows from (4.2) that $g h^{\prime} \in X$, and we have thereby checked that

$$
\begin{equation*}
\mathcal{N} \cdot\left(H^{\infty}\right)^{\prime} \subset X \tag{4.3}
\end{equation*}
$$

Finally, given $\eta \in \mathrm{BMOA}$, we invoke a result of Aleksandrov and Peller [1, Theorem 3.4] to find functions $\varphi_{j}, \psi_{j} \in H^{\infty}(j=1,2)$ such that $\eta^{\prime}=\varphi_{1} \psi_{1}^{\prime}+\varphi_{2} \psi_{2}^{\prime}$. Letting $g \in \mathcal{N}$ as before, we get

$$
\begin{equation*}
g \eta^{\prime}=g \varphi_{1} \psi_{1}^{\prime}+g \varphi_{2} \psi_{2}^{\prime} \tag{4.4}
\end{equation*}
$$

Here, the two terms of the form $g \varphi_{j} \psi_{j}^{\prime}$ are in $\mathcal{N} \cdot\left(H^{\infty}\right)^{\prime}$, so we infer from (4.3) that they are also in X. The right-hand side of (4.4) is therefore in X, and so is the left-hand side, $g \eta^{\prime}$. Thus we conclude that $g \eta^{\prime} \in X$ for all $g \in \mathcal{N}$ and $\eta \in$ BMOA. This establishes (4.1) and completes the proof.

References

[1] Aleksandrov, A. B., and V. V. Peller: Hankel operators and similarity to a contraction. - Internat. Math. Res. Notices 6, 1996, 263-275.
[2] Cohn, W. S.: A factorization theorem for the derivative of a function in H^{p}. - Proc. Amer. Math. Soc. 127, 1999, 509-517.
[3] Cohn, W. S., and I. E. Verbitsky: Factorization of tent spaces and Hankel operators. - J. Funct. Anal. 175, 2000, 308-329.
[4] Dyakonov, K. M.: Zero sets and multiplier theorems for star-invariant subspaces. - J. Anal. Math. 86, 2002, 247-269.
[5] Garnett, J. B.: Bounded analytic functions. - Springer, New York, revised first edition, 2007.
[6] Hayman, W. K.: On the characteristic of functions meromorphic in the unit disk and of their integrals. - Acta Math. 112, 1964, 181-214.
[7] Horowitz, C.: Zeros of functions in the Bergman spaces. - Duke Math. J. 41, 1974, 693-710.
[8] Jevtić, M.: On the Carleson measure characterization of BMOA functions on the unit ball. - Proc. Amer. Math. Soc. 114, 1992, 379-386.
[9] Schwartz, L.: Cours d'analyse. - Hermann, Paris, second edition, 1981.
[10] Shamoyan, F. A.: Toeplitz operators in some spaces of holomorphic functions and a new characterization of the class BMO. - Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22:2, 1987, 122-132.
[11] Triebel, H.: Theory of function spaces. II. - Monographs in Mathematics 84, Birkhäuser Verlag, Basel, 1992.
[12] Yanagihara, N.: On a class of functions and their integrals. - Proc. London Math. Soc. (3) 25, 1972, 550-576.

[^0]: doi:10.5186/aasfm. 2012.3728
 2010 Mathematics Subject Classification: Primary 30D50, 30D55.
 Key words: Nevanlinna class, Smirnov class, BMOA, derivatives, factorization, zero sets.
 Supported in part by grant MTM2011-27932-C02-01 from El Ministerio de Ciencia e Innovación (Spain) and grant 2009-SGR-1303 from AGAUR (Generalitat de Catalunya).

