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Abstract. We prove an existence result of bounded solutions for some degenerate nonlinear
elliptic equations whose prototype is

− div

(

w(x)

(1 + |u|)θ
∇u

)

= f − div g, in a bounded open Ω ⊂ R
N ,

in the setting of the weighted Sobolev spaces W
1,p
0

(Ω, w). By means of the relative rearrangement,

we prove an L∞-estimate which we use to obtain an existence result.

1. Introduction

Let Ω be a bounded open subset of RN with N ≥ 2. We are interested in the
study of the existence of bounded solutions for the following problem

(1.1)

{

− div a(x, u,∇u) = f − div g in Ω,

u = 0 on ∂Ω,

where a is a Carathéodory function having natural growth of order p − 1, p > 1,
with respect to |u| and |∇u| and the data f and g satisfy suitable summability
assumptions. We suppose that A(u) = − div a(x, u,∇u) is a nonlinear degenerate
elliptic operator in the sense that there exist a real valued non-negative function w
such that

(1.2) a(x, u,∇u) · ∇u ≥
w(x)

(1 + |u|)θ(p−1)
|∇u|p,

with θ a real number such that 0 ≤ θ ≤ 1. In the case where A is a uniformly
elliptic operator (θ = 0 and w = const), the existence of bounded weak solutions
was obtained in [6] where the crucial step of uniforme L∞-estimate was obtained
by means of the well-known Stampacchia’s lemma and by a different method based
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on rearrangement techniques in [12] for a quasi-linear operator and then in [13] for
nonlinear operator.

Regarding the weighted case with θ = 0, Murthy and Stampacchia in [19] had
initiated the first results in the linear case and since many results were given (see,
for instance, [3, 4, 8, 14]). In the non-coercive case where w is a nonzero constant,
the existence of bounded weak solutions can be found in [2] with f ∈ Lm(Ω), m >
max(N

p
, 1), and g ≡ 0 and in [5] with g ∈ (Lr(Ω))N , r > N

p−1
, and f ≡ 0. In [21] the

author proved the existence of bounded solutions for the Dirichlet problem associated
to the equation − div a(x, u,∇u)+F (x, u,∇u) = − div g, where the function a grows
like

(1.3) |a(x, s, ξ)| ≤ β(|s|)(a0(x) + |ξ|p−1),

with β : [0,+∞) → [0,+∞) an increasing function and g ∈ (Lr(Ω))N , r > N
p−1

.

In the present paper, we consider the problem (1.1) under, among others, the
assumptions (1.2) and (1.3). As far as the function w is involved, the natural setting
in which such equations are considered is that of weighted Sobolev spaces W 1,p

0 (Ω, w)
defined below. In this framework, the author in [11] has dealt with (1.1) in the
quasilinear case with g = 0, while in [9] one can find a related topic. The model
example we have in mind is the following boundary value problem:

{

− div
(

w(x) (1+|u|)m

(1+|u|)θ(p−1) |∇u|
p−2∇u

)

= f − div g in Ω,

u = 0 on ∂Ω,

where m > 0. We emphasize that since no growth condition is required for the
function β, it is not obvious that the function a(x, u,∇u) belongs to (Lp′(Ω))N that is
to say the operator − div a(x, u,∇u) is meaningless in general even as a distribution.
In fact such an operator is only defined on W 1,p

0 (Ω, w) ∩ L∞(Ω).
Despite this, there are two other difficulties in dealing with (1.1). The first one

is due to the fact that by (1.2), the diffusion may disappear when the unknown has
large values and leads, in general, to a non-coercive operator to which, unfortunately,
standard Leray–Lions surjectivity result cannot be applied (see [16]) even if the da-

tum belongs to the dual space W−1, p
p−1 (Ω, w− 1

p−1 ). We overcome this problem by
approximating the operator A with another one defined by “cutting”, by means of
truncatures, the nonlinearity a(x, s, ξ) obtaining a coercive and pseudomonotone dif-
ferential operator on W 1,p

0 (Ω, w), to which we can apply an existence result in [16].
The second difficulty stems from the term div g which generates the gradient of the
unknown function. This difficulty is overcome by choosing a suitable test function
built from the unknown and by means of rearrangement techniques (see [15, 18, 22],
without using the weighted version of the Sobolev imbedding [19, Theorem 3.1].

The paper is organized as follows. Some reminders on weighted Sobolev spaces
that we use, some properties on rearrangement of functions and the main result are
given in Section 2. In Section 3 we prove an a priori L∞-estimate which allows us to
prove our main result (see Section 4).

2. Some prerequisites and assumptions

2.1. Sobolev spaces with weight. We recall some facts about Sobolev spaces
with weight that can be found in [10]. Let Ω be an open subset of RN , N ≥ 2, and
1 ≤ p < ∞ a real number. Let w = w(x) be a weighted function, that is a function
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which is measurable and positive a.e. in Ω. Define Lp(Ω, w) = {u measurable : uw
1
p ∈

Lp(Ω)}. We shall denote by W 1,p(Ω, w) the function space which consists of all real
functions u ∈ Lp(Ω, w) such that their weak derivatives ∂u

∂xi
, i = 1, · · · , N (in the

sense of distributions) satisfy ∂u
∂xi

∈ Lp(Ω, w), for all i = 1, · · · , N . Endowed with the
norm

(2.1) ‖|u|‖p,w =

(
ˆ

Ω

|u|pw(x) dx+

ˆ

Ω

|∇u|pw(x) dx

)
1
p

,

W 1,p(Ω, w) is a Banach space. Further we suppose that

w ∈ L1
loc
(Ω),(2.2)

w− 1
p−1 ∈ L1(Ω).(2.3)

Due to condition (2.2), C∞
0 (Ω) is a subset of W 1,p(Ω, w). Therefore, we denote by

W 1,p
0 (Ω, w) the closure of C∞

0 (Ω) with respect to the norm

‖u‖p,w =

(
ˆ

Ω

|∇u|pw(x) dx

)
1
p

.

We remark that condition (2.3) implies that W 1,p(Ω, w) as well as W 1,p
0 (Ω, w) are re-

flexive Banach spaces if 1 < p <∞. The elements of the dual space W−1,p′(Ω, w1−p′)
of W 1,p

0 (Ω, w) can be represented as the sum

f0 −
n
∑

i=1

∂fi
∂xi

where fi
w
∈ Lp′(Ω, w), i = 0, 1, · · · , n.

Since we are dealing with compactness methods to get solutions of nonlinear
elliptic equations, a compact imbedding is necessary. This leads us to suppose that
the weight function w also satisfies

(2.4) w−q ∈ L1(Ω), 1 +
1

q
< p and q >

N

p
.

Condition (2.4) ensures that the imbedding

(2.5) W 1,p
0 (Ω, w) →֒ Lp(Ω)

is compact.

2.2. A reminder on the rearrangements. Let Ω be an open bounded subset
of RN , N ≥ 1, and let u : Ω → R be a measurable function. We denote by |E| the
Lebesgue measure of a subset E of Ω and by Ω∗ the interval ]0, |Ω|[. The distribution
function µu(t) of u is defined as follows

µu(t) = |{x ∈ Ω: |u(x)| > t}|, t ∈ R.

The decreasing rearrangement u∗ of u is defined as the generalized inverse function
of µu(t), that is

u∗(s) = sup{t > 0: µu(t) > s}, s ∈ Ω∗.

We observe that u∗(0) = ‖u‖∞ and recall that u and u∗ are equimeasurable, i.e.

µu(t) = µu∗(t), t ∈ R.
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This implies that for any non-negative Borel function F it holds that
ˆ

Ω

F (u(x)) dx =

ˆ |Ω|

0

F (u∗(s)) ds,

and in particular
‖u∗‖Lp(Ω∗) = ‖u‖Lp(Ω), 1 ≤ p ≤ ∞.

Given a measurable subset E ⊂ Ω, the following Hardy–Littlewood inequality holds

(2.6)

ˆ

E

|u(x)| dx ≤

ˆ |E|

0

u∗(s) ds.

At least, if ψ : R → R is a non-decreasing function, then

(2.7) (ψ(u))∗ = ψ(u∗).

These and other properties of decreasing rearrangement can be found, for instance,
in [15, 22].

Now we recall the notion of relative rearrangement. Given a function v ∈ L1(Ω),
we define the function w : Ω∗ → R by

w(s) =















ˆ

u>u∗(s)
v(x) dx if |{u = u∗(s)}| = 0,

ˆ

u>u∗(s)
v(x) dx+

ˆ s−|{u>u∗(s)}|

0

(

v|Pu(s)

)∗
(σ) dσ if |{u = u∗(s)}| > 0.

Here, v|Pu(s) denotes the restriction of v to the set

Pu(s) = {u = u∗(s)} := {x ∈ Ω: u(x) = u∗(s)}

and
(

v|Pu(s)

)∗

is its decreasing rearrangement. Next, we state the following lemma.

Lemma 2.1. Let v ∈ Lp(Ω) for some 1 ≤ p ≤ +∞ and let u be a measurable
function from Ω into R. Then

(i) w ∈ W 1,p(Ω∗) with Ω∗ = (0, |Ω|),
(ii) ‖dw

ds
‖Lp(Ω∗) ≤ ‖v‖Lp(Ω).

The proof of the above Lemma can be found in [18] if p = +∞ and in [17] if
1 ≤ p ≤ +∞. The following definition was introduced in [18].

Definition 2.1. The function dw
ds

is called the relative rearrangement of v with
respect to u and it is denoted by v∗u.

This function has many properties (see, for instance, [18, 22]), including the
following property that will be useful later and which is proved in [21].

Lemma 2.2. Let Ω be a bounded open set of RN . Let u ∈ W 1,1
0 (Ω), u ≥ 0, and

let v ∈ L1(Ω). Then for almost every t ∈ (0, ess sup u), it holds

d

dt

ˆ

u>t

v(x) dx = v∗u(µu(t))× µ′
u(t).

In addition, if f is a positive locally integrable function in Ω∗, then for all s, s′ ∈ Ω∗

with s ≤ s′

(2.8)

ˆ u∗(s)

u∗(s′)

f(µu(θ))(−µ
′
u(θ)) dθ ≤

ˆ s′

s

f(σ) dσ.
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2.3. Assumptions. Let Ω be an open bounded subset of RN , N ≥ 2, and p > 1
a real number. Let w be a non-negative real valued measurable function defined on
Ω which satisfies (2.2), (2.3) and (2.4). Throughout the paper we will be interested
in the problem

(2.9)

{

A(u) = f − div g in Ω,

u ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω),

and we assume that a : Ω×R×R
N → R

N is a Carathéodory function satisfying the
following assumptions for a.e. x ∈ Ω, for every s ∈ R and for every ξ, µ ∈ R

N

|a(x, s, ξ)| ≤ w
1
p (x)β(|s|)(b(x) + w1− 1

p (x)|ξ|p−1),(2.10)

a(x, s, ξ) · ξ ≥ w(x)hp−1(s)|ξ|p,(2.11)

(a(x, s, ξ)− a(x, s, µ)) · (ξ − µ) > 0, whenever ξ 6= µ,(2.12)

where β : [0,+∞) → (0,+∞) is a continuous function and h : R → (0,+∞) is a
continuous, decreasing, strictly positive and such that its primitive

H(t) =

ˆ t

0

h(τ) dτ,

is unbounded. As regards the source terms we assume that

(2.13) f ∈ Lm(Ω),
1

m
<

p

N
−

1

q
, m > 1

and

(2.14) gw− 1
p ∈ (Lmp′(Ω))N .

We use the following definition of solution:

Definition 2.2. A function u ∈ W 1,1
0 (Ω) is said to be a weak solution of (2.9) if

a(·, u,∇u) ∈ (Lp′(Ω, w−p′/p))N and

(2.15)

ˆ

Ω

a(x, u,∇u) ·∇φ dx =

ˆ

Ω

fφ dx+

ˆ

Ω

g ·∇φ dx, ∀φ ∈ W 1,p
0 (Ω, w)∩L∞(Ω).

Remark 2.1. We cannot expect that (2.15) holds for all φ ∈ W 1,p
0 (Ω, w) since,

in view of the assumption on exponents (2.13) and (2.5) the first integral in the
right-hand side is meaningless in general.

We use the following weighted version of the Stampacchia composition result (see
[20]):

Lemma 2.3. (see [1]) Assume that (2.5) holds. Let F : R → R be a uniformly
Lipschitz function such that F (0) = 0. Then, F maps W 1,p

0 (Ω, w) into itself. More-
over, if the set D of discontinuity points of F

′

is finite, then

∂(F ◦ u)

∂xi
=







F
′

(u)
∂u

∂xi
a.e. in {x ∈ Ω: u(x) /∈ D},

0 a.e. in {x ∈ Ω: u(x) ∈ D}.

In the sequel, we apply this Lemma to the following truncation functions defined
on R by Tk(s) = max{−k,min{k, s}} and Gk(s) = s− Tk(s), k > 0.
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3. L
∞-a priori estimate

In this section we prove the following

Theorem 3.1. Let us assume that (2.2), (2.3), (2.4), (2.12), (2.10), (2.11), (2.13)
and (2.14) hold true. Then any weak solution u of (2.9) which satisfies (2.15) is such
that

(3.1) H(‖u‖∞) ≤M :=M1 +M2

where

M1 =
2p

′

p′

Cp′

N

‖f‖
p′/p
Lm(Ω)‖w

−q‖
1

q(p−1)

L1(Ω)

[

Nρ

q
×
q(p− 1)− 1

pρ−N

]

q(p−1)−1
q(p−1)

|Ω|
pρ−N
Nρ ,

M2 =
p′C

1/p
p

CN

‖gw− 1
p‖

1
p−1

(Lmp′ (Ω))N
‖w−q‖

1/pq
L1(Ω)

(

N(pρ− 1)

pρ−N

)1−1/pρ

|Ω|
pρ−N
Npρ ,

ρ is such that 1/ρ = 1/m + 1/q, Cp = 2/p′(2/p)1/(p−1) and CN = Nw
1/N
N where wN

denotes the volume of the unit ball in R
N .

Proof. Let ǫ > 0 and t > 0. Observe that the function φ = 1
ǫ
Tǫ(Gt(H(u)))

belongs to W 1,p
0 (Ω, w)∩L∞(Ω) and so it is an admissible test function in (2.9). This

choice yields to

1

ǫ

ˆ

At,ǫ

a(x, u,∇u) · ∇u h(u) dx =

ˆ

At

fφ dx+
1

ǫ

ˆ

At,ǫ

g · ∇v dx

where we set for simplicity v = H(u)

At,ǫ = {x ∈ Ω: t < |v(x)| ≤ t+ ǫ} and At = {x ∈ Ω: |v(x)| > t}.

Using (2.11) and Young’s inequality we get

1

ǫ

ˆ

At,ǫ

w(x)|∇v|p dx ≤ 2

ˆ

At

|f | dx+
Cp

ǫ

ˆ

At,ǫ

|g|p
′

w− p′

p dx

where Cp =
2
p′

(

2
p

)
p′

p . Then, letting ǫ tend to 0+, we obtain

−
d

dt

ˆ

At

w(x)|∇v|p dx ≤ 2

ˆ

At

|f | dx+ Cp

(

−
d

dt

ˆ

At

G(x) dx

)

,

with G(x) = |g(x)|p
′

w− p′

p (x). Since v ∈ W 1,p
0 (Ω, w) ⊂ W 1,1

0 (Ω) and G belongs at
least to L1(Ω), one has

d

dt

ˆ

At

G(x) dx = G∗|v|(µ(t))× (µ′(t)), for a.e. t > 0,

where µ(t) = |At| and G∗|v| is the relative rearrangement of G with respect to |v|.
Hence, by Hardy’s inequality we get

(3.2) −
d

dt

ˆ

At

w(x)|∇v|p dx ≤ 2

ˆ µ(t)

0

f ∗(σ) dσ + CpG∗|v|(µ(t))× (−µ′(t)).

On the other hand and thanks to Hölder’s inequality, we can easily check that

(3.3) −
d

dt

ˆ

At

|∇v| dx ≤

(

−
d

dt

ˆ

At

w(x)|∇v|p dx

)
1
p
(

−
d

dt

ˆ

At

w(x)−
1

p−1 dx

)1− 1
p

.
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Since w(x)−
1

p−1 ∈ L1(Ω), we write

(3.4) −
d

dt

ˆ

At

w(x)−
1

p−1 dx =
(

w(x)−
1

p−1

)

∗|v|
(µ(t))× (−µ′(t)),

for almost every t > 0, where
(

w(x)−
1

p−1

)

∗|v|
is the relative rearrangement of w(x)−

1
p−1

with respect to |v|. As a consequence of the Fleming–Rishel formula, one has

(3.5) −
d

dt

ˆ

At

|∇v|dx ≥ CNµ(t)
1− 1

N .

for almost every t > 0. Therefore, combining (3.2), (3.3), (3.4) and (3.5) we obtain

1 ≤
2
(

w− 1
p−1

)
1
p′

∗|v|
(µ(t))× (−µ′(t))

1
p′

CNµ(t)
1− 1

N

(

ˆ µ(t)

0

f ∗(σ) dσ

)
1
p

+
C

1
p
p

(

w− 1
p−1

)
1
p′

∗|v|
(µ(t))×

(

G∗|v|

)
1
p (µ(t))× (−µ′(t))

CNµ(t)
1− 1

N

.

Let ǫ > 0 and τ ∈ ]0, |Ω|[. Integration both sides of the last inequality between
v∗(τ + ǫ) and v∗(τ), then using the definition of decreasing rearrangement, inequality
(2.8) and passing to the limit as ǫ goes to 0+, we obtain

−v∗′(τ) ≤

2
(

w− 1
p−1

)
1
p′

∗|v|
(τ)× (−v∗′(τ))

1
p

CNτ
1− 1

N

(
ˆ τ

0

f ∗(σ) dσ

)
1
p

+

C
1
p
p

(

w− 1
p−1

)
1
p′

∗|v|
(τ)×

(

G∗|v|

)
1
p (τ)

CNτ
1− 1

N

.

Thus, Young’s inequality enables us to get

−v∗′(τ) ≤
2p

′

p′
(

w− 1
p−1

)

∗|v|
(τ)

Cp′

N τ
p′(1− 1

N
)

(
ˆ τ

0

f ∗(σ) dσ

)
p′

p

+

p′C
1
p
p

(

w− 1
p−1

)
1
p′

∗|v|
(τ)×

(

G∗|v|

)
1
p (τ)

CNτ
1− 1

N

.

Therefore, integrating the previous inequality between 0 and |Ω| taking into account
(2.7), we obtain

H(‖u‖∞) = ‖v‖∞ ≤

ˆ |Ω|

0

2p
′

p′
(

w− 1
p−1

)

∗|v|
(t)

Cp′

N t
p′(1− 1

N
)

(
ˆ t

0

f ∗(σ) dσ

)

p′

p

dt

+

ˆ |Ω|

0

p′C
1
p
p

(

w− 1
p−1

)
1
p′

∗|v|
(t)×

(

G∗|v|

)
1
p (t)

CN t
1− 1

N

dt

= I1 + I2.



880 Jaouad Bennouna, Mohamed Hammoumi and Ahmed Youssfi

In order to estimate I1, we remark that ‖f ∗‖Lm((0,|Ω|)) = ‖f‖Lm(Ω) and we use Hölder’s
inequality obtaining

ˆ t

0

f ∗(σ) dσ ≤ ‖f‖Lm(Ω) × t1−
1
m ,

which we use to get

I1 ≤
2p

′

p′

Cp′

N

‖f‖
p′/p
Lm(Ω)

ˆ |Ω|

0

(

w− 1
p−1

)

∗|v|
(t)× t

p′

p
(1− 1

m
)−p′(1− 1

N
) dt.

Since by (2.4) one has q(p− 1) > 1, we use again Hölder’s inequality to obtain

I1 ≤
2p

′

p′

Cp′

N

‖f‖
p′/p
Lm(Ω)‖w

−q‖
1

q(p−1)

L1(Ω)

(

ˆ |Ω|

0

t

(

p′

p
(1− 1

m
)−p′(1− 1

N
)
)

q(p−1)
q(p−1)−1 dt

)1− 1
q(p−1)

.

The assumptions on exponents (2.4) and (2.13) allow us to get

I1 ≤
2p

′

p′

Cp′

N

‖g‖
p′/p
Lm(Ω)‖w

−q‖
1

q(p−1)

L1(Ω)

(

Nρ

q
×
q(p− 1)− 1

pρ−N

)1− 1
q(p−1)

|Ω|
pρ−N

Nρ(p−1) .

We now turn to estimate I2. Since pρ > N > 1, we can consider its Hölder conjugate
exponent α = pρ

pρ−1
. It’s easy to check that α satisfies the identity

1

qp
+

1

mp
+

1

α
= 1,

so that by Hölder’s inequality we obtain

I2 ≤
p′C

1
p
p

CN
‖w−q‖

1
qp

L1(Ω)

(
ˆ

Ω

|g|mp′w− m
p−1 dx

)
1

mp

(

ˆ |Ω|

0

tα(
1
N
−1) dt

)
1
α

.

A straightforward calculation gives

I2 ≤
p′C

1
p
p

CN
‖w−q‖

1
qp

L1(Ω)‖g‖
1

p−1

(Lmp′ (Ω,w
−

1
p ))N

(

N(pρ− 1)

pρ−N

)1− 1
pρ

|Ω|
pρ−N
Npρ . �

4. Application to an existence result

The aim of this section is to prove the following existence result:

Theorem 4.1. Suppose that the assumptions (2.2), (2.3), (2.4), (2.10), (2.11),
(2.12), (2.13) and (2.14) hold true. Then there exists at least one weak solution u ∈
W 1,p

0 (Ω, w) ∩ L∞(Ω) of problem (2.9). Moreover, we also have H(u) ∈ W 1,p
0 (Ω, w) ∩

L∞(Ω).

Remark 4.1. (1) The conclusion of the previous result does not depend on the
function h and is similar to the one obtained for operators A with w or h or both
w and h are nonzero positive constants. This seems to be natural, since if one looks
for bounded solutions, the degeneracy of the operator A (generated by unbounded
functions) “disappears”.

(2) The conclusion of Theorem 4.1 remains valid if we try to change the growth
assumption (2.10) by the following usual one

(4.1) |a(x, s, ξ)| ≤ w
1
p (x)(b(x) + |s|p−1 + w1− 1

p (x)|ξ|p−1),

where b ∈ Lp′(Ω), p′ := p
p−1
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Remark 4.2. Observe that if q = +∞, the degeneration of the operator A in
problem 2.9 is produced only when the unknown function has large values. Hence,
Theorem 4.1 extends the results contained in [2, 5, 20, 21].

Our result involves partially a related topic in [6, 12, 13] when q = +∞ and h is
a nonzero constant and in [3] when only h is a nonzero constant.

4.1. Approximate problem. Let n ∈ N. We consider the sequence of approx-
imate problems

(4.2)

{

An(u) = fn − div g in Ω,

u = 0 on ∂Ω,

where fn = Tn(f) and An(u) = − div a(x, Tn(u),∇u). The operator An enjoys the
properties in Lemma A.1 (see the Appendix). Since the source term fn−div g belongs
to the dual space W−1,p′(Ω, w1−p′), in view of [16, Theorem 2.7] (p. 180), there exists
at least a function un ∈ W 1,p

0 (Ω, w) solution to problem (2.9) in the sense

(4.3)

ˆ

Ω

a(x, Tn(un),∇un) · ∇φ dx =

ˆ

Ω

fnφ dx+

ˆ

Ω

g · ∇φ dx, ∀φ ∈ W 1,p
0 (Ω, w).

Using Stampacchia’s method [20], one can prove that un ∈ L∞(Ω) for fixed n. Thus,
by virtue of Theorem 3.1 we get

(4.4) ‖un‖∞ ≤ C∞ := H−1(M),

where H−1 stands for the inverse function of H . Taking φ = un as test function in
the formulation (4.3) and then using (2.11) and Young’s inequality, we arrive at

hp−1(C∞)

2

ˆ

Ω

|∇un|
pw(x) dx

≤ C∞‖f‖L1(Ω) +
p− 1

p

(

2

php−1(C∞)

)
p′

p
ˆ

Ω

|g|p
′

w− p′

p (x) dx.

Observe that thanks to (2.14), |g|w− 1
p belongs at least to Lp′(Ω). Thus, we

conclude that un is uniformly bounded in W 1,p
0 (Ω, w). Therefore, there exists a

function u ∈ W 1,p
0 (Ω, w) such that for a subsequence still denoted by un, we have

(4.5) un ⇀ u weakly in W 1,p
0 (Ω, w),

by the compact imbedding (2.5) the sequence {un}n converges strongly to u in Lp(Ω),
so that we can deduce that

(4.6) un → u a.e. in Ω

and by (4.4) we get

(4.7) un ⇀ u in L∞(Ω) for σ∗(L∞, L1).

4.2. Almost everywhere convergence of the gradients. We now shall
prove that the weak convergence (4.5) is strong, that is

(4.8) un → u strongly in W 1,p
0 (Ω, w).

Using φ = un − u, for n > C∞, as test function in the formulation (4.3), we get

(4.9)

ˆ

Ω

a(x, un,∇un) · (∇un −∇u) dx =

ˆ

Ω

fn(un − u) dx+

ˆ

Ω

g · (∇un −∇u) dx.
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Since |g| ∈ Lp′(Ω, w− p′

p ) = (Lp(Ω, w))′, by (4.5) we have

lim
n→∞

ˆ

Ω

g · (∇un −∇u) dx = 0.

For the first term in the right-hand side of (4.9), we can write
∣

∣

∣

∣

ˆ

Ω

fn(un − u) dx

∣

∣

∣

∣

≤

ˆ

Ω

|(fn − f)(un − u)| dx+

∣

∣

∣

∣

ˆ

Ω

f(un − u) dx

∣

∣

∣

∣

≤ 4C∞‖f‖m|{|f | > n}|1−
1
m +

∣

∣

∣

∣

ˆ

Ω

f(un − u) dx

∣

∣

∣

∣

In view of (4.7) and (2.13), we obtain

lim
n→∞

ˆ

Ω

fn(un − u) dx = 0.

Thus, one has

(4.10) lim
n→∞

ˆ

Ω

a(x, un,∇un) · (∇un −∇u) dx = 0.

On the other hand, we write
ˆ

Ω

(a(x, un,∇un)− a(x, un,∇u)) · (∇un −∇u) dx

=

ˆ

Ω

a(x, un,∇un) · (∇un −∇u) dx−

ˆ

Ω

a(x, un,∇u) · (∇un −∇u) dx.

By virtue of (4.6) and Vitali’s theorem, we obtain

a(x, un,∇u) → a(x, u,∇u) strongly in (Lp′(Ω, w− p′

p ))N .

It follows from (4.5) that

lim
n→∞

ˆ

Ω

a(x, un,∇u) · (∇un −∇u) dx = 0,

which with (4.10) allow us to get

lim
n→∞

ˆ

Ω

(a(x, un,∇un)− a(x, un,∇u)) · (∇un −∇u) dx = 0.

Hence, arguing as in [7, Lemma 5], we get the strong convergence of un in W 1,p
0 (Ω, w)

which in turn implies, for a subsequence still denoted by un,

(4.11) ∇un → ∇u a.e. in Ω.

4.3. Passage to the limit. Let n > C∞. By virtue of (2.10), the sequence

{a(x, un,∇un)w
− 1

p}n is uniformly bounded in (Lp′(Ω))N and by (4.6) and (4.11) we
have

a(x, un,∇un)w
− 1

p → a(x, u,∇u)w− 1
p a.e. in Ω.

So that by [16, Lemma 1.3], one has

a(x, un,∇un)w
− 1

p ⇀ a(x, u,∇u)w− 1
p weakly in (Lp′(Ω))N .
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Let φ ∈ (Lp(Ω, w))N . We have φw
1
p ∈ (Lp(Ω))N . Thus, we get

lim
n→∞

ˆ

Ω

a(x, un,∇un) · φ dx =

ˆ

Ω

a(x, u,∇u) · φ dx

which means that

(4.12) a(x, un,∇un)⇀ a(x, u,∇u) weakly in (Lp′(Ω, w− p′

p ))N .

Let now v ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω). Since fn → f strongly in L1(Ω) and in view of

(4.12), we can pass to the limit in (4.3) to get

(4.13)

ˆ

Ω

a(x, u,∇u) · ∇v dx =

ˆ

Ω

fv dx+

ˆ

Ω

g · ∇v dx.

Let us now use H(un) ∈ W 1,p
0 (Ω, w) as test function in (4.3). Using (2.11), (4.4)

and Young’s inequality, we arrive at
ˆ

Ω

|∇H(un)|
pw(x) dx ≤ 2M‖f‖L1(Ω) +

2

p′

(

2

p

)
1

p−1
ˆ

Ω

|g|p
′

w− p′

p (x) dx.

Since |g|w− 1
p belongs at least to Lp′(Ω), we have that {H(un)}n is uniformly bounded

in W 1,p
0 (Ω, w) and then in view of (4.5) and (4.6), we obtain H(u) ∈ W 1,p

0 (Ω, w) ∩
L∞(Ω).

Remark 4.3. The weak convergence (4.12) is a hidden step in the proof of (4.8)
as it was done in [7]. Moreover, the weak convergence will become stronger by using
(4.8) and Vitali’s theorem.

Exemple 4.1. We put ourselves in the situation p = N = 2. Let Ω = {(x, y) ∈

R
2 : x2 + y2 < 1}. The weight function w(x, y) = (x2 + y2)

1
4 is such that w ∈ L1(Ω),

w−1 ∈ L1(Ω) and w−3 ∈ L1(Ω). The functions f(x, y) = (x2 + y2)−
3
8 cos(x2 + y2)−1

belongs to L2(Ω) and g(x, y) = ((x2 + y2)
1
8 cosxy, (x2 + y2)−

1
72 sin xy) is such that

gw− 1
2 ∈ (L4(Ω))2. Therefore, by virtue of Theorem 3.1 the problem

− div
((x2 + y2)

1
4

√

1 + |u|
∇u
)

= (x2+ y2)−
3
8 cos(x2+ y2)−1−div g in Ω, u(x, y) = 0 on ∂Ω

has at least a solution u ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω).

Appendix

We need to use the following concept of operators (see [16]).

Definition A.1. Let V be a reflexive Banach space. An operator T mapping V
into its dual V ′ is said to be pseudomonotone, if for any sequence {uj}j in V with
uj ⇀ u weakly in V and lim sup〈Tuj, uj − u〉 ≤ 0, it follows that

lim inf〈Tuj, uj − v〉 ≥ 〈Tu, u− v〉, ∀v ∈ V.

Lemma A.1. The operator An(u) = − div a(x, Tn(u),∇u) maps W 1,p
0 (Ω, w) into

its dual W−1,p′(Ω, w1−p′). Moreover, An is bounded, coercive and pseudomonotone.

Proof. Let u ∈ W 1,p
0 (Ω, w). By the growth assumption (2.10), we get

ˆ

Ω

|a(x, Tn(u),∇u)|
p′w1−p′(x) dx ≤ 2p

′−1βp′

n

(
ˆ

Ω

bp
′

(x) dx+

ˆ

Ω

|∇u|pw(x) dx

)

,
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where βn = max
|t|≤n

β(t). This yields |a(x, Tn(u),∇u)| ∈ Lp′(Ω, w1−p′). Thus, for each

n ∈ N we have
An(u) ∈ W−1,p′(Ω, w1−p′).

Let u, v ∈ W 1,p
0 (Ω, w). Thanks to the growth assumption (2.10) and Hölder’s

inequality, we obtain

|〈An(u), v〉| ≤ 2
1
pβn

(
ˆ

Ω

bp
′

(x) dx+

ˆ

Ω

|∇u|pw(x) dx

)
1
p′

‖v‖W 1,p
0 (Ω,w).

Hence,

‖An(u)‖W−1,p′(Ω,w1−p′) ≤ Cn

(

1 + ‖u‖p−1

W 1,p
0 (Ω,w)

)

,

where Cn is a constant depending on n, b, Ω and p. So that An is bounded from
W 1,p

0 (Ω, w) to W−1,p′(Ω, w1−p′). Let u ∈ W 1,p
0 (Ω, w). Using (2.11), one has

〈An(u), u〉 ≥ hp−1(n)‖u‖p
W 1,p

0 (Ω,w)
.

This implies that the operator An is coercive.
To show that An is pseudomonotone, let us consider a sequence {uj}j inW 1,p

0 (Ω, w)
such that

uj ⇀ u weakly in W 1,p
0 (Ω, w)

and

(A-1) lim sup〈Anuj, uj − u〉 ≤ 0.

We shall prove that

lim inf〈Anuj, uj − v〉 ≥ 〈Anu, u− v〉, ∀v ∈ W 1,p
0 (Ω, w).

We have ∇uj ⇀ ∇u in (Lp(Ω, w))N , that is ∇ujw
1
p ⇀ ∇uw

1
p in (Lp(Ω))N . Being An

bounded, we get

(A-2) Anuj ⇀ χn weakly in W−1,p′(Ω, w1−p′).

Due to the growth assumption (2.10), we derive that

(A-3) a(x, Tn(uj),∇uj)⇀ ψn weakly in (Lp′(Ω, w1−p′))N .

Actually by (A-2) and (A-3) one has

(A-4) χn = − divψn.

Therefore, it follows from (A-1) that

(A-5) lim sup〈Anuj, uj〉 ≤ 〈χn, u〉.

Let φ ∈ (Lp(Ω))N . We can write the monotonicity hypothesis (2.12)

(a(x, Tn(uj),∇uj)− a(x, Tn(uj), φ)) · (∇uj − φ) > 0.

Thus
ˆ

Ω

a(x, Tn(uj),∇uj) · ∇uj dx

>

ˆ

Ω

a(x, Tn(uj),∇uj) · φ dx+

ˆ

Ω

a(x, Tn(uj), φ) · (∇uj − φ) dx.

(A-6)

Since by (2.5) the imbedding W 1,p
0 (Ω, w) →֒ Lp(Ω) is compact, there exist a subse-

quence still denoted by {uj} such that uj → u a.e. in Ω, and a function in Lp(Ω) that



On L
∞-regularity result for some degenerate nonlinear elliptic equations 885

dominates |uj| a.e. in Ω. So that by Lebesgue’s dominated convergence theorem, one
has

a(x, Tn(uj), φ) → a(x, Tn(u), φ) strongly in (Lp′(Ω, w1−p′))N

and so

(A-7) lim
j→∞

ˆ

Ω

a(x, Tn(uj), φ) · (∇uj − φ) dx =

ˆ

Ω

a(x, Tn(u), φ) · (∇u− φ) dx.

Consequently, using (A-3), (A-4), (A-5), (A-7) and letting j → ∞ in (A-6), we get
ˆ

Ω

(ψn − a(x, Tn(u), φ)) · (∇u− φ) dx ≥ 0.

Let θ ∈ (Lp(Ω, w))N . Setting φ = ∇u+ tθ we obtain
ˆ

Ω

[a(x, Tn(u),∇u+ tθ)− ψn] · θ dx ≥ 0.

Letting t→ 0 and using Lebesgue’s dominated convergence theorem, one has
ˆ

Ω

[a(x, Tn(u),∇u)− ψn] · θ dx ≥ 0

which implies that
ψn = a(x, Tn(u),∇u) a.e. in Ω.

Hence, we have χn = Anu and so

(A-8) Anuj ⇀ Anu in W−1,p′(Ω, w1−p′).

By (A-5) we have

lim sup〈Anuj, uj〉 ≤ 〈Anu, u〉.

Going back to inequality (A-6) written with φ = ∇u and letting j → ∞, we obtain

lim inf

ˆ

Ω

a(x, Tn(uj),∇uj) · ∇uj dx ≥

ˆ

Ω

a(x, Tn(u),∇u) · ∇u dx.

It follows that

lim
j→∞

〈Anuj, uj〉 = 〈Anu, u〉,

which with (A-8) prove that An is pseudomonotone. �
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