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Abstract. We investigate a formula of Falconer which describes the typical value of the

generalised Rényi dimension, or generalised q-dimension, of a self-affine measure in terms of the

linear components of the affinities. We show that in contrast to a related formula for the Hausdorff

dimension of a typical self-affine set, the value of the generalised q-dimension predicted by Falconer’s

formula varies discontinuously as the linear parts of the affinities are changed. Conditionally on

a conjecture of Bochi and Fayad, we show that the value predicted by this formula for pairs of

two-dimensional affine transformations is discontinuous on a set of positive Lebesgue measure.

These discontinuities derive from discontinuities of the lower spectral radius which were previously

observed by the author and Bochi.

1. Introduction

If T := (T1, . . . , TN) is a finite collection of transformations of a complete metric
space X, and each Ti is a contraction in the sense that for some λ < 1 one has
d(Tix, Tiy) ≤ λd(x, y) for all x, y ∈ X, it is well-known that there exists a unique
nonempty compact set ZT ⊆ X such that

ZT =

N
⋃

i=1

Ti (ZT) ,

see for example [11, 18]. The case in which X = R
d and the transformations Ti are

affine—in which case ZT is called a self-affine set—has been the subject of intense
study over the last few decades (for a recent survey we note [13]).

Various notions of fractal dimension have been investigated for both general and
special classes of self-affine set. In certain special cases where the linear parts of the
affinities preserve or permute the horizontal and vertical axes of R2, explicit formulæ
for the Hausdorff dimension and box dimension exist (see e.g. [3, 5, 16, 21, 23]). In
the context of general self-affine sets, a landmark result of Falconer [8] established
the Hausdorff and box dimensions of “typical” self-affine sets in a sense which we now
describe. Let Md(R) denote the set of all d × d real matrices, and recall that for
A ∈ Md(R) we define the singular values of A, denoted σ1(A), . . . , σd(A), to be the
non-negative square roots of the eigenvalues of the positive semi-definite matrix A∗A,
listed in decreasing order. Let us define a function ϕ : (0,+∞)×Md(R) → [0,+∞)
by

ϕs(A) :=

{

σ1(A) · · ·σk(A)σk+1(A)
s−k, k ≤ s ≤ k + 1 ≤ d,

| detA| sd , s ≥ d,

https://doi.org/10.5186/aasfm.2017.4214
2010 Mathematics Subject Classification: Primary 28A80.
Key words: Lower spectral radius, self-affine measure, self-affine set, q-dimension, Rényi

dimension.



228 Ian D. Morris

and for every A1, . . . , AN in the open unit ball of Md(R) define the affinity dimension

or singularity dimension of (A1, . . . , AN) to be the quantity

s(A1, . . . , AN) := inf

{

s > 0:

∞
∑

n=1

N
∑

i1,...,in=1

ϕs (Ai1 · · ·Ain) < ∞
}

.

Falconer showed that for any fixed invertible d×d matrices A1, . . . , AN with Euclidean
norm strictly less than 1

3
, for Lebesgue almost all v1, . . . , vN ∈ R

d the self-affine set
ZT associated to the collection of affine transformations T := (T1, . . . , TN) defined by
Tix := Aix+ vi satisfies

dimH (ZT) = dimB (ZT) = min {s(A1, . . . , AN), d} ,
see [8]; the bound on the norm was subsequently relaxed to 1

2
by B. Solomyak [25],

and to 1 by Jordan, Simon and Pollicott for a notion of “almost self-affine set” which
incorporates additional random translations [19]. While it is well-known that the
Hausdorff dimension of ZT can fail to depend continuously on the affinites T1, . . . , TN

(see e.g. [11, Example 9.10]), it was recently shown by Feng and Shmerkin in [15]
that the affinity dimension s is a continuous function of (A1, . . . , AN). An alternative
proof of this statement was subsequently given by the author [24].

In this article we will focus not on self-affine sets but on self-affine measures. A
Borel probability measure µ on R

d is called self-affine if there exist a probability
vector p = (p1, . . . , pN) and a collection of affinities T = (T1, . . . , TN) such that

µ(A) =

N
∑

i=1

piµ
(

T−1
i A

)

for every Borel set A ⊆ R
d. If T1, . . . , TN are contractions then for each probability

vector p with all probabilities nonzero there exists a unique Borel probability measure
µp,T satisfying the above functional equation (see e.g. [9, Theorem 2.8]), and the
support of that measure is equal to the associated self-affine set ZT. In this article
our interest is in the generalised q-dimension or generalised Rényi dimension of a
self-affine measure, which is defined as follows. For each r > 0 let Mr denote the
set of all r-mesh cubes on R

d, that is, the set of all d-dimensional cubes of the form
[j1r, (j1 +1)r)× [j2r, (j2 +1)r)× · · ·× [jdr, (jd +1)r) where j1, . . . , jd ∈ Z. For q > 1
we define

Mr(q, µ) :=
∑

C∈Mr

µ(C)q

for every r > 0, and

Dq(µ) := lim inf
r→0

logMr(q, µ)

(q − 1) log r
, Dq(µ) := lim sup

r→0

logMr(q, µ)

(q − 1) log r
.

If Dq(µ) and Dq(µ) are equal then we define the generalised q-dimension of µ to
be their common value and denote this by Dq(µ). For q > 1 the generalised q-
dimension admits an alternative expression as a limit of certain integrals [22]. In [10,
Theorem 6.2], Falconer characterised the generalised Rényi dimensions of typical self-
affine measures in a similar manner to his earlier characterisation of the Hausdorff
and box dimensions of typical self-affine sets:

Theorem 1.1. (Falconer) Let (A1, . . . , AN) be invertible linear transformations
of Rd such that ‖Ai‖ < 1

2
for every i, let p = (p1, . . . , pN) be a probability vector with
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all entries nonzero, and for each q > 1 define rq(A1, . . . , AN , p) to be the quantity

sup

{

s > 0:
∞
∑

n=1

N
∑

i1,...,in=1

ϕs(Ai1 · · ·Ain)
1−qpqi1 · · · p

q
in
< ∞

}

.

If 1 < q ≤ 2 then for Lebesgue-almost-every (v1, . . . , vN) ∈ R
Nd the self-affine

measure µp,T corresponding to the transformations Tix := Aix+vi and the probability
vector p satisfies Dq(µp,T) = min{rq(A1, . . . , AN , p), d}.

In the later article [12] this result was extended to a more general class of almost
self-affine measures, under the weaker hypotheses max ‖Ai‖ < 1 and q > 1 but requir-
ing randomised translations in a similar manner to [19]. An alternative extension of
this result, which allows q ∈ [1, Q] for certain values of Q > 2, was recently obtained
by Barral and Feng [4, §6]. In view of the recent work of Feng and Shmerkin [15] on
the continuity of the formula s(A1, . . . , AN) for the typical dimension of a self-affine
set, it is natural to ask whether the formula rq(A1, . . . , AN , p) for the typical dimen-
sion of a self-affine measure is also continuous with respect to changes in the matrices
A1, . . . , AN . The purpose of this article is to answer this question negatively.

In order to state our results we require an additional definition. Let us say that
a pair of matrices (A1, A2) is (c, ε, λ)-resistant if it has the following property: for
all choices of i1, . . . , in ∈ {1, 2} such that at most εn of the integers ik are equal to
2, we have ‖Ai1 · · ·Ain‖ ≥ cλn. We will say that (A1, A2) resists impurities, or more
simply is resistant, if it is (c, ε, λ)-resistant for some c, ε > 0 and some λ > 1. We
recall the following conjecture of Bochi and Fayad [6]:

Conjecture 1.2. (Bochi–Fayad Conjecture) Let H denote the set of all 2 × 2
real matrices with unit determinant and unequal real eigenvalues, and let E denote
the set of all 2 × 2 real matrices with unit determinant and non-real eigenvalues.
Then the set of resistant pairs (A1, A2) ∈ H × E has full Lebesgue measure.

Some partial results in the direction of Conjecture 1.2 may be found in [1, 2, 14].
Bonatti has constructed explicit examples of resistant pairs in which A2 is a rational
rotation, and these examples are described in [7].

When investigating the discontinuities of rq we will focus on the situation in which
(A1, . . . , AN) is a pair of real matrices of dimension two. In this case the probability
vector p = (p1, p2) has the form (p, 1−p) for some real number p ∈ (0, 1), and in view
of this we shall simply write rq(A1, A2, p) in place of the value rq(A1, A2, (p, 1 − p))
defined previously. We prove:

Theorem 1.3. The function r admits the following discontinuities:

(i) Let q > 1, p ∈ (0, 1) and 0 < δ < λ < 1
2
, and suppose that δ is small enough

that
logmin{pq, (1− p)q}

log
√
λδ

<
log(pq + (1− p)q)

log λ
.

Then the function (A1, A2) 7→ rq(A1, A2, p) is discontinuous at the pair

A1 :=

(

λ 0
0 δ

)

, A2 :=

(

λ 0
0 λ

)

.

(ii) If the Bochi–Fayad Conjecture is true then there exists a set X ⊆ M2(R)2

with positive Lebesgue measure with the following properties: ‖A1‖, ‖A2‖ < 1
2

for all (A1, A2) ∈ X, and there exists Q > 1 such that for all p ∈ [1
2
, 1) and
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q > Q, the function (A1, A2) 7→ rq(A1, A2, p) is discontinuous at every point
of X.

Remark. The reader will see from the proofs below that Theorem 1.3(i) in fact
has the following more precise statement: if Rθ denotes the matrix corresponding to
rotation about the origin through angle θ, then

lim inf
θ→0

rq(A1, λRθ, p) < rq(A1, A2, p).

Clearly the case of p < 1
2

may also be considered in (ii) by interchanging the rôles of
the matrices A1 and A2.

It would be of interest to remove the restriction on q in (ii) so as to bring that
statement into line with (i). Unfortunately the Bochi–Fayad Conjecture does not
seem to be a sufficiently strong statement to allow us to deduce that (A1, A2) 7→
rq(A1, A2, p) has a positive-measure set of discontinuities for every p ∈ (0, 1) and
q > 1. We nonetheless conjecture that this map has a positive-measure set of dis-
continuities for all such p and q, and hope that whatever methods may be employed
to prove the Bochi–Fayad Conjecture will also suffice to establish the discontinuity
of rq(·, ·, p) on a set of positive measure for all q > 1 and p ∈ (0, 1).

2. Proof of Theorem 1.3

For p ∈ (0, 1), q > 1, s > 0 and invertible matrices A1, A2 ∈ M2(R), let us define
p1 := p and p2 := (1− p), and write

Rq(A1, A2, p, s) := lim
n→∞

1

n
log

(

N
∑

i1,...,in=1

ϕs (Ai1 · · ·Ain)
1−q pqi1 · · · p

q
in

)

.

We note:

Lemma 2.1. For fixed invertible matrices A1, A2 ∈ Md(R) such that ‖A1‖,
‖A2‖ < 1, fixed q > 1 and fixed p ∈ (0, 1) the function Rq(A1, A2, p, ·) : (0,+∞) → R

is well-defined and strictly increasing.

Proof. It is well-known that ϕs(AB) ≤ ϕs(A)ϕs(B) for all s > 0 and A,B ∈
Md(R), see for example [8, Lemma 2.1]; since the proof is brief we include it. For
s ≥ d the result is trivial, and for k ≤ s < k + 1, k = 0, . . . , d− 1 we have

ϕs(AB) = (σ1(AB) · · ·σk+1(AB))s−k (σ1(AB) · · ·σk(AB))k+1−s

=
∥

∥∧k+1(AB)
∥

∥

s−k ∥
∥∧k(AB)

∥

∥

k+1−s

≤
∥

∥∧k+1A
∥

∥

s−k ∥
∥∧k+1B

∥

∥

s−k ∥
∥∧kA

∥

∥

k+1−s ∥
∥∧kB

∥

∥

k+1−s
= ϕs(A)ϕs(B)

as claimed (where ∧kA denotes the kth exterior power of A). It follows that each
sequence (an) defined by

an := log

(

N
∑

i1,...,in=1

ϕs (Ai1 · · ·Ain)
1−q pqi1 · · · p

q
in

)

satisfies an+m ≥ an + am for all n,m ≥ 1, and this is well known to imply the
convergence of the sequence (1/n)an to a limit in (−∞,+∞]. Observe that ϕs(A) ≥
σ2(A)

s for all A ∈ M2(R). Since A1, A2 are invertible we have σ2(A1), σ2(A2) ≥ ε for
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some ε > 0, and thus
N
∑

i1,...,in=1

ϕs (Ai1 · · ·Ain)
1−q pqi1 · · ·p

q
in ≤

N
∑

i1,...,in=1

σ2 (Ai1 · · ·Ain)
s(1−q) pqi1 · · · p

q
in

≤
N
∑

i1,...,in=1

εs(1−q)pqi1 · · ·p
q
in

= εns(1−q) (pq + (1− p)q)n

(where we have used the fact that 1− q is negative) so that the limit is finite.
Let us show that Rq(A1, A2, p, s) is strictly increasing in s. We note that ϕs+t(A)

≤ ϕs(A)‖A‖t for all s, t > 0 and for every matrix A ∈ M2(R). Taking θ :=
max{‖A1‖, ‖A2‖} ∈ (0, 1) it follows that for all n ≥ 1

N
∑

i1,...,in=1

ϕs+t (Ai1 · · ·Ain)
1−q pqi1 · · ·p

q
in ≥ θnt(1−q)

N
∑

i1,...,in=1

ϕs (Ai1 · · ·Ain)
1−q pqi1 · · · p

q
in

and therefore

Rq(A1, A2, p, s+ t) ≥ (1− q)t log θ +Rq(A1, A2, p, s) > Rq(A1, A2, p, s)

as required. �

Our interest in the previous lemma is due to the following consequence:

Corollary 2.2. For all invertible matrices A1, A2 such that ‖A1‖, ‖A2‖ < 1, all
p ∈ (0, 1) and all q > 1, we have

rq(A1, A2, p) = sup {s > 0: Rq(A1, A2, p, s) < 0}(1)

= inf {s > 0: Rq(A1, A2, p, s) > 0} .
Before commencing the proof of Theorem 1.3, let us briefly describe its strategy.

The proofs of continuity of the affinity dimension s given in [15, 24] operate by
defining the singular value pressure function

S(A1, . . . , AN , s) := lim
n→∞

1

n
log

N
∑

i1,...,in=1

ϕs (Ai1 · · ·Ain)

and observing that for fixed invertible A1, . . . , AN with max ‖Ai‖ < 1 the function
s 7→ S(A1, . . . , AN , s) is strictly decreasing, so that

s(A1, . . . , AN) = sup{s > 0: S(A1, . . . , AN , s) > 0}(2)

= inf{s > 0: S(A1, . . . , AN , s) < 0}.
The proofs then proceed by showing that for each fixed s > 0 (or in the case of [24],
for a dense set of s > 0) the function (A1, . . . , AN) 7→ S(A1, . . . , AN , s) is continuous,
and then deduce the continuity of s via the formula (2). The argument which we
employ in proving Theorem 1.3 essentially converse to this: we demonstrate the
existence of discontinuities in the function (A1, A2) 7→ Rq(A1, A2, p, s) and show that
they induce discontinuities in rq via the equation (1).

The origin of these discontinuities can be described informally as follows. Fol-
lowing [17], let us define the lower spectral radius of a pair of matrices A1, A2 to be
the quantity

̺(A1, A2) := lim
n→∞

min
1≤i1,...,in≤2

‖Ai1 · · ·Ain‖
1

n = inf
n≥1

min
1≤i1,...,in≤2

‖Ai1 · · ·Ain‖
1

n .
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The lower spectral radius is known to depend discontinuously on the matrix entries
in general [20, p. 20], and this phenomenon was investigated in depth by the author
and Bochi in [7]. This relates to Rq(A1, A2, p, s) as follows: if 0 < s ≤ 1 then we may
estimate

Rq(A1, A2, p, s) ≤ lim sup
n→∞

1

n
log

(

2
∑

i1,...,in=1

pqi1 · · · p
q
in max

1≤j1,...,jn≤2
‖Aj1 · · ·Ajn‖s(1−q)

)

= log(pq + (1− p)q) + s(1− q) log ̺(A1, A2)

—where the negativity of the exponent s(1 − q) has the critical effect of converting
the maximum over all matrix products into a minimum—and similarly on the other
hand

Rq(A1, A2, p, s) ≥ lim inf
n→∞

1

n
log

(

min
1≤i1,...,in≤2

pqi1 · · · p
q
in · max

1≤j1,...,jn≤2
‖Aj1 · · ·Ajn‖s(1−q)

)

= q logmin{p, 1− p}+ s(1− q) log ̺(A1, A2).

These estimates, despite their crudity, imply that if the discontinuity of the lower
spectral radius ̺ at a particular pair of matrices is strong enough then it induces a
discontinuity in the function Rq, which can be exploited to deduce a discontinuity
in the function rq. Indeed, the examples of discontinuity of rq in Theorem 1.3(i)
and (ii) correspond directly with known examples of the discontinuity of the lower
spectral radius, specifically Example 1.1 and Proposition 7.6 in [7]. In the context
of Theorem 1.3(i) we can obtain sufficient control on the size of the discontinuity in
̺ without any assumptions on p and q. In the context of Theorem 1.3(ii) our much
weaker control on the discontinuities of ̺ means that the above estimate is only

useful if q is large and p is close to 1
2
, which has the effect of bringing the quantities

log(pq + (1 − p)q) and q log(min{p, (1 − p)}) closer together. In order to deal with
more general p the proof of Theorem 1.3(ii) in fact applies a slightly finer estimate
than that indicated above: for this we require a slightly strengthened statement of [7,
Proposition 7.6], which shows not only that the lower spectral radius is discontinuous
in certain places but also specifies how it is discontinuous. We nonetheless emphasise
that the conceptual origin of the discontinuity of rq in this paper is that it is a
consequence of the discontinuity of the lower spectral radius.

Proof of Theorem 1.3(i). Let q > 1 and 0 < λ < 1
2
, and let A1, A2, δ be as

in Theorem 1.3(i). Throughout the proof we shall find it useful to write p1 := p,
p2 := (1 − p) in order to simplify certain frequently-arising expressions. We observe
that by straightforward differentiation and minimisation with respect to p one has
pq+(1−p)q ≥ 21−q for every q > 1 and p ∈ (0, 1). In particular, noting the hypothesis
of Theorem 1.3(i) and the negativity of log λ,

(3) 0 <
q logmin{p, 1− p}
(q − 1) log

√
λδ

<
log(pq + (1− p)q)

(q − 1) log λ
≤ log 1

2

log λ
< 1.

Clearly ‖Ai1 · · ·Ain‖ = λn for every i1, . . . , in ∈ {1, 2} and n ≥ 1, so for every
s ∈ (0, 1]

Rq(A1, A2, p, s) = lim
n→∞

1

n
log

(

2
∑

i1,...,in=1

λsn(1−q)pqi1 · · · p
q
in

)

= s(1− q) log λ+ log (pq + (1− p)q) .
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In particular if s < log(pq + (1− p)q)/(q − 1) log λ ∈ (0, 1] then Rq(B1, B2, p, s) < 0,
so we have

rq(A1, A2, p) ≥
log(pq + (1− p)q)

(q − 1) log λ

using Corollary 2.2. Now fix an integer k ≥ 1 and define B1 := A1 and

B2 := λ

(

cos π
2k

− sin π
2k

sin π
2k

cos π
2k

)

so that

Bk
2 =

(

0 −λk

λk 0

)

.

(We observe that by taking k sufficiently large, (B1, B2) may be taken as close to
(A1, A2) as desired.) Since we have

Bn
1B

k
2B

n
1 =

(

λn 0
0 δn

)(

0 −λk

λk 0

)(

λn 0
0 δn

)

=

(

λn+kδn 0
0 λn+kδn

)

for all n ≥ 1 it follows that

min
1≤i1,...,i2n+k≤2

‖Bi1 · · ·Bin‖ ≤ λn+kδn

for every n ≥ 1, and therefore

lim
n→∞

(

min
1≤i1,...,in≤2

‖Bi1 · · ·Bin‖
)

1

n

≤
√
λδ.

Hence for 0 < s ≤ 1

Rq(B1, B2, p, s) = lim
n→∞

1

n
log

(

2
∑

i1,...,in=1

‖Bi1 · · ·Bin‖s(1−q) pqi1 · · ·p
q
in

)

≥ lim
n→∞

1

n
log

(

max
1≤i1,...,in≤2

(

‖Bi1 · · ·Bin‖s(1−q)
)

min {pqn, (1− p)qn}
)

= lim
n→∞

1

n
log

(

(

min
1≤i1,...,in≤2

‖Bi1 · · ·Bin‖
)s(1−q)

min {pqn, (1− p)qn}
)

≥ s(1− q)

2
log(λδ) + logmin{pq, (1− p)q}.

If 1 ≥ s > q logmin{p, 1 − p}/(q − 1) log
√
λδ ∈ (0, 1) then this last term exceeds 0

and therefore rq(B1, B2, p) ≥ s. Hence in view of Corollary 2.2

rq(B1, B2, p) ≤
q logmin{p, 1− p}
(q − 1) log

√
λδ

.

As was previously noted, by taking the integer k in the definition of B2 arbitrarily
large we may take (B1, B2) as above arbitrarily close to (A1, A2), and it follows that

lim inf
(B1,B2)→(A1,A2)

rq(B1, B2, p) ≤
2q logmin{p, 1− p}

(q − 1) log(λδ)

<
log(pq + (1− p)q)

(q − 1) log λ
≤ rq(A1, A2, p)

where we have used (3), so that rq is discontinuous at (A1, A2) as claimed. This
completes the proof of (i). �
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The proof of (ii) uses closely analogous estimates, but we require an additional
result relating to Conjecture 1.2. The following result is a more specialised reworking
of one half of [7, Proposition 7.6].

Lemma 2.3. Suppose that Conjecture 1.2 is true. Then there exist ε, κ > 0 and
a set X ⊂ M2(R)2 with positive Lebesgue measure such that for all (A1, A2) ∈ X we
have

‖A1‖, ‖A2‖ <
1

2
, ̺(A1, A2) ≥ e−κ,

but such that in every open neighbourhood of (A1, A2) we may find (B1, B2) such
that for a certain integer k ≥ 1 depending on (B1, B2)

lim
n→∞

∥

∥Bn
1B

k
2B

n
1

∥

∥

1

2n+k = ̺(B1, B2) ≤ e−ε−κ.

Proof. Let us first define

Z :=

{

(αH, βR) : H ∈ H, R ∈ E and 0 < α < β <
1

2‖H‖ .
}

Clearly this is an open subset of M2(R)2, and for every (A1, A2) ∈ Z both of the
matrices Ai have positive determinant and have norm strictly less than one half.
By the hypothesis that Conjecture 1.2 is true, the set of all (αH, βR) ∈ Z such
that (H,R) is resistant has full Lebesgue measure in Z, and hence in particular has
positive Lebesgue measure in M2(R)2.

We first claim that for all (A1, A2) = (αH, βR) such that (H,R) is resistant we
have ̺(A1, A2) >

√
detA1. Indeed, suppose that (H,R) is (c, λ, ε)-resistant where

c, ε > 0 and λ > 1. If Ai1 , . . . , Ain contains at most εn instances of A2 then we have

‖Ai1 · · ·Ain‖ ≥ cλnαn

since ‖Ai1 · · ·Ain‖ is at least αn times the norm of a product of n of the matrices
H ,R in which at most εn matrices are equal to R. On the other hand if the product
Ai1 · · ·Ain contains at least εn instances of A2 then we have

‖Ai1 · · ·Ain‖ ≥
√

| detAi1 · · ·Ain | ≥ α(1−ε)nβεn,

and therefore

̺(A1, A2) = lim
n→∞

inf
1≤i1,...,in≤2

‖Ai1 · · ·Ain‖
1

n ≥ min

{

λα,

(

β

α

)ε

α

}

> α =
√

detA1

as claimed.
We next claim that for every (A1, A2) = (αH, βR) ∈ Z, we may in every open

neighbourhood of A2 find a matrix B2 such that for some integer k ≥ 1 depending
on B2,

lim
n→∞

∥

∥An
1B

k
2A

n
1

∥

∥

1

2n+k =
√

detA1.

(We note that in this case necessarily ̺(A1, B2) =
√
detA1, since clearly any product

of n of those two matrices is bounded below in norm by the square root of the
determinant, which in turn is bounded below by (detA1)

n/2.) To show this it is
sufficient to show that for any fixed H ∈ H and R ∈ E , we may in every open
neighbourhood of R find a matrix R′ such that for some integer k ≥ 1 depending on
R′,

(4) lim
n→∞

∥

∥Hn(R′)kHn
∥

∥

1

2n+k = 1.
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Let us prove this statement. Given (H,R) ∈ H × E let λ > 1 denote the larger
eigenvalue of H , and let u and v be eigenvectors of H corresponding respectively
to the eigenvalues λ and λ−1. Since R has non-real eigenvalues it is conjugate to a
rotation through some particular angle θ. It is easy to see that this implies that in
any neighbourhood of R we may find a matrix R′, conjugate to a rotation through
a different angle, such that (R′)ku = γv for some nonzero real number γ and integer
k ≥ 1. In the basis (u, v) we have

Hn(R′)kHn =

(

λn 0
0 λ−n

)(

0 δ
γ ǫ

)(

λn 0
0 λ−n

)

=

(

0 δ
γ λ−2nǫ

)

for some real numbers δ, ǫ, where the first column of (R′)k reflects the fact that
(R′)ku = γv. In particular ‖Hn(R′)kHn‖ is bounded independently of n, and this
yields (4).

Summarising the proof so far, we have shown that there is a full-measure subset
Z1 of the open set Z ⊂ M2(R)2 such that every (A1, A2) ∈ Z1 satisfies ‖A1‖, ‖A2‖ < 1

2

and ̺(A1, A2) >
√
detA1, and has the property that in every open neighbourhood of

A2 we may find B2 such that for some integer k ≥ 1,

lim
n→∞

∥

∥An
1B

k
2A

n
1

∥

∥

1

2n+k = ̺(A1, B2) =
√

detA1.

So, let us choose κ > 0 such that the set

Z2 :=
{

(A1, A2) ∈ Z1 : ̺(A1, A1) ≥ e−κ >
√

detA1

}

has positive Lebesgue measure, and choose ε > 0 such that the set

X :=
{

(A1, A2) ∈ Z2 :
√

detA1 < e−κ−ε
}

has positive Lebesgue measure. The proof is complete. �

Remark. In order to improve Theorem 1.3(ii) so as to allow arbitrary q > 1 it
would be sufficient to be able to choose the set X in such a way that the ratio ε/κ
is made arbitrarily large. In effect, this asks that we should be able to reduce the
second singular value of A1 arbitrarily far without simultaneously reducing ̺(A1, A2)
by a comparable amount: in Theorem 1.3(i), this effect is achieved by the simple
expedient of reducing δ.

Proof of Theorem 1.3(ii). Let X, ε, κ be as in Lemma 2.3 and choose Q :=
1 + κ

ε
> 1. For all p ∈ [1

2
, 1) and q > Q we have

(pq + (1− p)q)
1

q < p
κ

κ+ε

since for each fixed q > 1 the former expression is a convex function of p, the latter
is a concave function of p, the two functions agree at p = 1 and the former function
is strictly less than the latter at p = 1

2
. Rearranging we find that for all such p and q

log pq

log(pq + (1− p)q)
< 1 +

ε

κ
.

Since clearly e−κ ≤ ̺(A1, A2) ≤ max{‖A1‖, ‖A2‖} < 1
2

we have κ > log 2 and
therefore

(5) 0 <
log(pq)

(1− q)(ε+ κ)
<

log(pq + (1− p)q)

(1− q)κ
<

log(pq + (1− p)q)

(1− q) log 2
≤ 1
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for all p ∈ [1
2
, 1) and q > Q, where we have reused the elementary inequality pq+(1−

p)q ≥ 21−q which was similarly applied in (i). We will show that for all such p and q,
every point of X is a point of discontinuity of the map (A1, A2) 7→ rq(A1, A2, p).

Let us therefore fix p and q and take (A1, A2) ∈ X. For every s ∈ (0, 1] we have

Rq(A1, A2, p, s) = lim
n→∞

1

n
log

(

2
∑

i1,...,in=1

‖Ai1 · · ·Ain‖s(1−q)pqi1 · · ·p
q
in

)

≤ lim
n→∞

1

n
log

(

max
1≤i1,...,in≤2

(

‖Ai1 · · ·Ain‖s(1−q)
)

2
∑

j1,...,jn=1

pqj1 · · · p
q
jn

)

= lim
n→∞

1

n
log

(

(

min
1≤i1,...,in≤2

‖Ai1 · · ·Ain‖
)s(1−q) 2

∑

j1,...,jn=1

pqj1 · · ·p
q
jn

)

= s(1− q) log ̺(A1, A2) + log (pq + (1− p)q)

≤ s(q − 1)κ+ log (pq + (1− p)q) .

It follows that if s < log(pq + (1 − p)q)/(1 − q)κ < 1 then Rq(A1, A2, p, s) is
negative, and hence by Corollary 2.2

rq(A1, A2, p) ≥
log(pq + (1− p)q)

(1− q)κ
.

On the other hand we may take (B1, B2) arbitrarily close to (A1, A2) such that

lim
n→∞

∥

∥Bn
1B

k
2B

n
1

∥

∥

1

2n+k = ̺(B1, B2) < e−ε−κ

for some integer k ≥ 1. In particular we have

lim
n→∞

1

n
log max

1≤i1,...,in≤2

(

‖Bi1 · · ·Bin‖s(1−q) pqi1 · · · p
q
in

)

≤ lim
n→∞

1

n
log max

1≤i1,...,in≤2
(‖Bi1 · · ·Bin‖)s(1−q) + lim

n→∞

1

n
log max

1≤i1,...,in≤2

(

pqi1 · · · p
q
in

)

= lim
n→∞

s(1− q)

n
log min

1≤i1,...,in≤2
‖Bi1 · · ·Bin‖+ q log p

= s(1− q) log ̺(B1, B2) + q log p

since p1 := p ≥ 1
2
≥ 1− p = p2, but also

lim
n→∞

1

n
log max

1≤i1,...,in≤2

(

‖Bi1 · · ·Bin‖s(1−q) pqi1 · · · p
q
in

)

≥ lim
n→∞

1

2n+ k
log
(

∥

∥Bn
1B

k
2B

n
1

∥

∥

s(1−q)
pn1p

k
2p

n
1

)

= s(q − 1) log ̺(B1, B2) + q log p,

and we conclude that the limit

lim
n→∞

1

n
log max

1≤i1,...,in≤2

(

‖Bi1 · · ·Bin‖s(1−q) pqi1 · · · p
q
in

)
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is equal to s(q − 1) log ̺(B1, B2) + q log p. It follows that for all s ∈ (0, 1]

Rq(B1, B2, p, s) = lim
n→∞

1

n
log

(

2
∑

i1,...,in=1

‖Bi1 · · ·Bin‖s(1−q) pqi1 · · · p
q
in

)

≥ lim
n→∞

1

n
log

(

max
1≤i1,...,in≤2

(

‖Bi1 · · ·Bin‖s(1−q) pqi1 · · ·p
q
in

)

)

= s(1− q) log ̺(B1, B2) + q log p

> s(q − 1)(ε+ κ) + q log p.

If 1 ≥ s > (q log p)/(1− q)(ε+ κ) ∈ (0, 1) then Rq(B1, B2, p, s) > 0, and therefore

rq(B1, B2, p) ≤
log(pq)

(1− q)(ε+ κ)

by Corollary 2.2. Hence

lim inf
(B1,B2)→(A1,A2)

rq(B1, B2, p) ≤
q log p

(1− q)(ε+ κ)

<
log(pq + (1− p)q)

(1− q)κ

≤ rq(A1, A2, p)

using (5), and (B1, B2) 7→ rq(B1, B2, p) is discontinuous at (A1, A2) as claimed. �
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