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Abstract. In this paper we investigate Poincaré-type integral inequalities in the functional

Musielak structure. We extend the ones already well known in Sobolev, Orlicz and variable exponent

Sobolev spaces. We introduce conditions on the Musielak functions under which they hold. The

identification with null trace functions space is given.

1. Introduction and main results

In the last two decades, there has been an increasingly interest in studying
Musielak spaces, particularly for the analysis of nonlinear partial differential equa-
tions with non-standard growth conditions which come from modelling modern mate-
rials such as non Newtonian fluids, see for instance [9, 19] and the references therein.

In [10, 11, 17] there is a basic background on the Musielak spaces LM(Ω) and the
Musielak–Sobolev spaces WmLM(Ω). An interesting missing feature is the Poincaré-
type inequalities (in norm or in integral forms) in the closed subspace Wm

0 LM (Ω)
defined as the closure of the set C∞

0 (Ω) of compactly supported functions in Ω
with respect to the weak-∗ topology σ(ΠLM ,ΠEM∗) in the Musielak–Orlicz space
WmLM(Ω). However, proving the Poincaré integral inequality for functions in C∞

0 (Ω)
and then extending it by a density argument (as is often done for a constant expo-
nent) is not an easy task since the passage to the limits is not allowed because of the
lack in general of density of smooth functions in Wm

0 LM(Ω) at least in the modular
sense (see Definition 2.1). This is mainly due to the fact that the shift operator is
not acting in general on Musielak spaces unless some regularity conditions on the
Musielak function M are satisfied see [2, 21].

In this paper, we are interested in the problem of Poincaré-type integral inequal-
ity in the Musielak spaces. Such integral inequality yields obviously the Poincaré
norm inequality. Precisely, we give sufficient conditions on the Φ-function M for the
following Poincaré-type inequality

ˆ

Ω

∑

|α|<m

M(x, |Dαu(x)|) dx 6

ˆ

Ω

∑

|α|=m

M(x, c|Dαu(x)|) dx

to hold for every u ∈ Wm
0 LM (Ω) where c > 0 is a constant. We also get the same

inequality in the subspace Wm
0 EM (Ω) under minimal assumptions.
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1.1. Poincaré-type inequalities: state of the art. Let Ω be a bounded open
subset of RN , N > 1 and let 1 6 p < ∞. The usual Sobolev spaces are denoted
W 1,p(Ω) while by W 1,p

0 (Ω) we denote the norm closure of C∞
0 (Ω) in W 1,p(Ω). The

classical Poincaré integral inequality asserts that

(1.1)

ˆ

Ω

|u(x)|p dx 6 C(Ω, p)

ˆ

Ω

|∇u(x)|p dx

for every u ∈ W 1,p
0 (Ω) where C(Ω, p) is a constant depending on Ω and p. In fact,

this inequality remains valid if Ω is only bounded in one direction. Recalling here
that when Ω is regular (see for instance [18, Theorem 4.14]) we have

(1.2) W 1,p
0 (Ω) =

{
u ∈ W 1,p(Ω) : tr(u) = 0 on ∂Ω

}

and hence W 1,p
0 (Ω) = W 1,1

0 (Ω) ∩W 1,p(Ω).
Gossez [8, Lemma 5.7] proved the existence of two constants cm > 0 and cm,Ω > 0

such the following Orlicz version of Poincaré integral inequality

(1.3)

ˆ

Ω

∑

|α|<m

ϕ(|Dαu(x)|) dx 6 cm

ˆ

Ω

∑

|α|=m

ϕ(cm,Ω|D
αu(x)|) dx,

holds for every u ∈ Wm
0 Lϕ(Ω). Here, Wm

0 Lϕ(Ω) is defined as the closure of the set
C∞

0 (Ω) of compactly supported functions in Ω with respect to the weak-∗ topology
σ(ΠLϕ,ΠEϕ∗) in the Orlicz spaces WmLϕ(Ω), where ϕ and ϕ∗ form a pair of com-
plementary N -functions, cf. [1]. Since no extra condition is assumed on ϕ, inequality
(1.3) proved in Wm

0 Lϕ(Ω) covers not only (1.1) but it remains valid for a wide class

of Orlicz functions. In contrast to Sobolev spaces W 1,p
0 (Ω), the introduction of the

Orlicz spaces Wm
0 Lϕ(Ω), defined by mean of the weak-∗ topology σ(ΠLϕ,ΠEϕ∗),

seems to be more convenient and very interesting in the theory of existence of PDEs
in nonreflexive functional spaces, since firstly the weak topology is not equivalent in
general to the strong one and secondly coarser topology has more compact sets than
the strong one.

Unfortunately, in the framework of variable exponent spaces the situation is more
complicated and more regularities on the exponent are needed. In fact in the Sobolev

space W
1,p(·)
0 (Ω), defined as the norm closure of C∞

0 (Ω) functions in W 1,p(·)(Ω), the
Poincaré norm inequality was first proved in the pioneering paper [15, Theorem 3.10]
written about variable exponent Sobolev spaces provided that the exponent p(·) is
continuous on Ω and then by using the approche based on the boundedness of the
maximal operator on Lp(·)(Ω), the authors in [4, Theorem 6.21] proved the Poincaré
norm inequality

(1.4) ‖u‖Lp(·)(Ω) 6 c(N, p(·),Ω)‖∇u‖Lp(·)(Ω)

for every u ∈ W
1,p(·)
0 (Ω) and for exponents p(·) satisfying 1 < p− ≤ p(x) ≤ p+ < +∞

and the so-called log-Hölder regularity, that is

(1.5) |p(x)− p(y)| 6
−C0

log(|x− y|)
; for every x, y ∈ Ω with |x− y| 6

1

2
,

for some constant C0 > 0.
In [5, Theorem 8.2.4] the authors defined W

1,p(·)
0 (Ω) as the closure of Sobolev

functions with compact support in Ω with respect to the norm in W 1,p(·)(Ω). They
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proved the Poincaré norm inequality for a regular bounded domain and for exponent
p(·) satisfying the following two conditions

(1.6)
∣∣∣ 1

p(x)
−

1

p(y)

∣∣∣ 6 C1

log(e+ 1
|x−y|

)

and for some p∞ ∈ R

(1.7)
∣∣∣ 1

p(x)
− p∞

∣∣∣ 6 C2

log(e+ |x|)

for every x, y ∈ Ω, where C1 > 0 and C2 > 0 are constants. Let us note in

passing that the above two definitions of the Sobolev space W
1,p(·)
0 (Ω) coincide if

p(·) is a measurable bounded exponent and if (1.6) and (1.7) are fulfilled (see [5,
Corollary 11.2.4]). Ciarlet and Dinca [3] proved the Poincaré norm inequality using
an approach which does not rely on the density arguments.

In general in the variable exponent Sobolev spaces W
1,p(·)
0 (Ω) (defined as the

norm closure of C∞
0 (Ω) functions in W 1,p(·)(Ω)), the Poincaré integral inequality

(1.1) with variable exponent p(·) instead of constant exponent p fails to hold as it
was shown in [6, Example, pp. 444–445]. Indeed, if the variable exponent p(·) is a
continuous function having a minimum or a maximum then an integral version of
the Poincaré inequality can not be obtained (see [20]). However, under a suitable
monotony property on the variable exponent p(·) Maeda [16] proved the Poincaré
integral inequality for C1

0(Ω)-functions.

It is worth recalling that the Poincaré norm inequality in W
1,p(·)
0 (Ω) obtained in

the aforementioned references requires the continuity of the variable exponent. Here
we prove the Poincaré integral inequality in Musielak spaces, and so the Poincaré
norm inequality, by introducing some assumptions that don’t require the continuity

of the variable exponent when reducing to Sobolev spaces W
1,p(·)
0 (Ω).

1.2. Structural assumptions. In this subsection we give the definition of
Musielak Φ-functions and we introduce new systematic sufficient conditions which
enable us to prove Poincaré-type integral inequalities in Musielak spaces.

Definition 1.1. (φ-function, Φ-function). A real function M : Ω×R
+ → R

+ is
called a φ-function, written M ∈ φ, if M(x, ·) is a nondecreasing and convex function
for all x ∈ Ω with M(x, 0) = 0, M(x, s) > 0 for s > 0, M(x, s) → ∞ as s → ∞ and
M(·, s) is a measurable function for every s > 0.

A φ-function is called Φ-function, written M ∈ Φ, if furthermore it satisfies
ess infx∈ΩM(x, 1) > 0 and

lim
s→0

M(x, s)

s
= 0 and lim

s→∞

M(x, s)

s
= ∞.

Throughout the paper, we consider Φ-functions on which we assume at least one
of the following fundamental regularity assumptions.

(M1) There exists a function ϕ :
[
0, 1/2]×R

+ → R
+ such that ϕ(·, s) and ϕ(x, ·)

are nondecreasing functions and for all x, y ∈ Ω with |x− y| 6 1
2

and for any
constant c > 0

M(x, s) 6 ϕ(|x− y|, s)M(y, s), with lim sup
ε→0+

ϕ(ε, cε−N) < ∞.

(M2) A Φ-function M is said to satisfy the Y -condition on a segment [a, b] of the
real line R, if
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either

(Y0) :





there exist t0 ∈ R
+ and 1 6 i 6 N such that the partial function

xi ∈ [a, b] 7→ M(x, t) changes constantly its monotony on both

sides of t0 (that is for t > t0 and t < t0),

or

(Y∞) :

{
there exists 1 6 i 6 N such that for all t > 0, the partial function

xi ∈ [a, b] 7→ M(x, t) is monotone on [a, b].

Here, xi stands for the ith component of x ∈ Ω.

Example 1.1. A Φ-function M : Ω ×R
+ → R

+ satisfies the (Y0)-condition on
[a, b] ⊂ Ω with respect to x1 if the following hold:

(i) O =
{
x′ = (x2, · · · , xN) ∈ R

N−1; (x1, x
′) ∈ Ω for any x1 ∈ [a, b]

}
is non-

empty. (Consequently for t ∈ R
+, the partial mapping x1 ∈ [a, b] → M

(
(x1,

x′), t
)
∈ R

+ makes sense for any x′ ∈ O).
(ii) There exists t0 > 0 such that for any x′ ∈ O, if t > t0 the map x1 ∈ [a, b] →

M
(
(x1, x

′), t
)
∈ R

+ has certain type of monotony, for example it is increasing

(decreasing), while for t < t0 the map x1 ∈ [a, b] → M
(
(x1, x

′), t
)

decreasing
(increasing).

More particular, assume that p : Ω → R
+ satisfies 1 < p(·) < ∞ and the following:

(iii) O = {x′ = (x2, · · · , xN) ∈ R
N−1; (x1, x

′) ∈ Ω for any x1 ∈ [a, b]} is non-
empty.

(iv) For any x′ ∈ O the mapping x1 ∈ [a, b] → p(x1, x
′) is non-decreasing.

Take M(x, t) = tp(x), x ∈ Ω, t > 0 and let t0 = 1. Then, for t > 1 x1 ∈ [a, b] →
M(x, t) = tp(x1,x′) is non-decreasing for any x ∈ Ω while for t < 1, x1 ∈ [a, b] →
M(x, t)) = tp(x1,x′) is non-increasing for any x ∈ Ω. Consequently, M(x, t) = tp(x)

satisfies the (Y0)-condition on [a, b] with i = 1.

The highly challenging and important part of the analysis in Musielak spaces
is giving a relevant structural condition yielding approximation properties of these
nonstandard spaces. In general for a Φ-function M , smooth functions are not dense
in norm in the Musielak space WmLM (Ω). The authors [2] introduced the condition
(M1) to study the problem of density of smooth functions in Musielak spaces and
they showed that this condition unify and improve the known results in Orlicz–
Sobolev spaces as well as the variable exponent Sobolev spaces. In fact, the condition
(M1) holds trivially in the case of Orlicz spaces while in the case of variable exponent
Sobolev spaces (M1) holds if we choose

ϕ(τ, s) = max
{
sσ(τ), s−σ(τ)

}
.

When σ(τ) = −c/log τ , with 0 < τ 6 1/2, we obtain the log-Hölder continuity
condition (1.5). Nonetheless, we can choose various ϕs. For more examples of Φ-
functions satisfying (M1) we refer to [2].

Remark 1.1. (1) In the case where M(x, t) = tp(x), the assumption (Y0) prevents
the variable exponent p(·) to get a local extremum while (Y∞) is not satisfied unless
p(·) is a constant function.

(2) Let us consider the double phase function M(x, t) = tp + a(x)tq. If there is
1 6 i 6 N such that the function xi 7→ a(x) is monotone then M satisfies obviously
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(Y∞) and so (M2). If xi 7→ a(x) is not a constant function then the double phase
function M can not satisfy (Y0).

(3) If 1 < p(·) < +∞ and there exists 1 6 i 6 N such that the function xi 7→ p(x)
is monotone on a compact subset of the real line R, then the following Φ-functions

M1(x, t) = tp(x), M2(x, t) = tp(x) log(e+ t), M3(x, t) = et
p(x)

− 1,

satisfy (M2).

We note in passing here, that the assumption (M2) covers the one given in [16].
In what follows, we will need the following local integrability condition on M , that
is for any constant number c > 0 and for every compact set K ⊂ Ω

(1.8)

ˆ

K

M(x, c) dx < ∞.

Inequality (1.8) was introduced in [17, Definition 7.5] for measurable subsets of Ω with
finite measure. Observe that (1.8) is not always satisfied as shown by the following
example. Set Ω = (−1/2, 1/2) and set

M(x, s) =

{
s1/x, x ∈ (0, 1/2),

s2, x ∈ (−1/2, 0).

Note that M is a Φ-function. Consider the compact set K = [0, 1/4], which is
contained in Ω. Then for c > 1

ˆ

K

M(x, c) dx =

ˆ 1/4

0

c1/x dx = +∞.

We point out that the assumption (M1) implies (1.8).

1.3. Main results. In this subsection we give our main results. Let M be a Φ-
function and let M∗ be its complementary Φ-function (see (2.1) hereafter). Assume
that M and M∗ satisfy booth the condition (1.8). Then by [21] we can define the
space Wm

0 LM (Ω) to be the σ(ΠLM ,ΠEM∗) closure of C∞
0 (Ω) in WmLM(Ω).

The first result we obtain concerns Poincaré-type inequalities in the Musielak
spaces Wm

0 LM(Ω).

Theorem 1.1. Let Ω be a bounded open subset in R
N having the segment

property. Let M and M∗ be a pair of complementary Φ-functions such that M
satisfies (M1) and (M2) and M∗ satisfies (1.8). Then there exists a constant cm,Ω

depending only on m and Ω such that for every u ∈ Wm
0 LM (Ω)

(1.9)

ˆ

Ω

∑

|α|<m

M(x, |Dαu|) dx 6

ˆ

Ω

∑

|α|=m

M(x, cm,Ω|D
αu|) dx.

Moreover, for every u ∈ Wm
0 LM(Ω)

(1.10)
∑

|α|<m

‖Dαu‖M,Ω 6 C(m,Ω)
∑

|α|=m

‖Dαu‖M,Ω,

where C(m,Ω) is a constant depending only on m and Ω.

In the framework of Orlicz spaces, Theorem 1.1 was proved by Gossez [8, Lem-
ma 5.7] where only the definition of the space Wm

0 Lϕ, defined as the closure of
C∞
0 (Ω)-functions with respect to the weak-∗ topology σ(ΠLϕ,ΠEϕ∗), is used to get the

Poincaré integral inequality without assuming the segment property on the bounded
open Ω. As in the classical way, the Poincaré integral inequality was first proved for
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smooth functions and then (1.9) follows by a density argument based on mollifica-
tions. In general, the shift operator is not acting between Musielak spaces (see [15,
example 2.9 and Theorem 2.10]). So we face a major difficulty in using mollification
and then we can not use the same approach as in [8].

Our contribution to overcame this problem consists in using the regularity condi-
tion (M1) on the Φ-function M and the segment property on the domain Ω (see Def-
inition 2.2). Those conditions enable us to get the modular density of C∞

0 -functions
in Wm

0 LM (Ω) (see [2]) which we use in the proof of Theorem 1.1 instead the weak-∗
density as it was done in [8].

Remark 1.2. A direct consequence of the inequality (1.10), is that the maps

u ∈ Wm
0 LM (Ω) →

∑

|α|6m

‖Dαu‖M,Ω

and

u ∈ Wm
0 LM(Ω) →

∑

|α|=m

‖Dαu‖M,Ω

define equivalent norms on Wm
0 LM (Ω).

The following theorem concerns the Poincaré integral inequality in the Musielak–
Sobolev space Wm

0 EM(Ω) defined as the norm closure of C∞
0 -functions in WmEM (Ω).

Theorem 1.2. Let Ω be a bounded open subset in R
N and let M ∈ Φ satisfy

(1.8) and (M2). The inequality (1.9) holds true for every u ∈ Wm
0 EM(Ω) and then

so is (1.10).

We note here that by the definition of Wm
0 EM (Ω), we do not need to assume

in the above Theorem 1.2 the segment property on Ω and the condition (M1) on
the Φ-function M . Therefore, in view of Remark 1.1 the result we obtain covers
the Poincaré integral inequality obtained by Maeda [16] for C1

0-functions in the case
where the variable exponent p(·) is assumed to satisfy a monotony condition.

Let Km
0 LM (Ω) be the norm closure of the set of WmLM(Ω) functions with com-

pact support in Ω. In the particular case M(x, t) = tp(x), Km
0 LM(Ω) is nothing but

the space W
m,p(x)
0 (Ω) defined in [5].

Theorem 1.3. Let Ω be an open subset in R
N and let M ∈ Φ satisfy (M1).

Then Km
0 LM(Ω) coincides with Wm

0 EM (Ω). Furthermore, if Ω is bounded and M
satisfies (M2), then (1.9) and (1.10) are fulfilled.

Now, the remaining question is how to provide a satisfactory generalization of the
Poincaré inequality for constant exponent, because the equality (1.2) is substituted
by the inclusion

W 1
0LM (Ω) = C∞

0 (Ω)
σ(ΠLM ,ΠEM∗)

⊂
{
u ∈ W 1LM (Ω) : tr(u) = 0 on ∂Ω

}

which may be strict in general unless additional conditions are imposed on the Φ-
function M . Note here that for every u ∈ W 1LM (Ω) the trace tr(u) = u|∂Ω is well
defined. Indeed, if Ω is of finite Lebesgue measure one has W 1LM (Ω) →֒ W 1,1(Ω) and
by the Gagliardo trace theorem (see [7]) we have the embedding W 1,1(Ω) →֒ L1(∂Ω).
Hence, we conclude that for all u ∈ W 1LM (Ω) there holds u|∂Ω ∈ L1(∂Ω). We give
the answer in the following theorem.

Theorem 1.4. Let Ω be a bounded open subset in R
N having the segment

property. Assume that the pair of complementary Φ-functions M,M∗ is such that
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M satisfies (M1) and M∗ satisfies (1.8). Then, we get

Wm
0 LM (Ω) = Wm,1

0 (Ω) ∩WmLM(Ω).

If furthermore Ω has a Lipschitz boundary ∂Ω, then we obtain

(1.11) W 1
0LM(Ω) = {u ∈ W 1LM(Ω) : tr(u) = 0 on ∂Ω}.

1.4. Organization of the paper. In section 2 we review some basic facts we
use about Musielak spaces. Further details can be found in the standard monograph
by Musielak [17] and the papers by Kamińska [12, 13, 14]. Section 3 is devoted to
the proof of the main results.

2. Musielak structure

In the following section we give a brief basic review on Musielak–Orlicz spaces.
For M ∈ φ, the Musielak–Orlicz space LM(Ω) (resp. EM (Ω)) is defined as the set of
all measurable functions u : Ω → R such that

´

Ω
M(x, |u(x)|/λ) dx < +∞ for some

λ > 0 (resp. for all λ > 0). Equipped with the Luxemburg norm

‖u‖M,Ω = inf

{
λ > 0:

ˆ

Ω

M

(
x,

|u(x)|

λ

)
dx 6 1

}
.

LM(Ω) is a Banach space [17, Theorem 7.7] and EM(Ω) is its closed subset. Define
M∗ : Ω×R

+ → R
+ by

(2.1) M∗(x, s) = sup
t>0

{st−M(x, t)} for all s > 0 and all x ∈ Ω.

M∗ is also a Φ-function and is called the complementary function to M in the sense
of Young. Moreover, we have the following Young inequality

uv 6 M(x, u) +M∗(x, v), ∀u, v > 0, ∀x ∈ Ω,

from which we easily get the Hölder inequality
ˆ

Ω

|uv| dx 6 2‖u‖M,Ω‖v‖M∗,Ω

for all u ∈ LM(Ω) and v ∈ LM∗(Ω). We say that {uk}k converges to u in norm in
LM(Ω), if ‖uk − u‖M,Ω → 0 as k → ∞. The notion of the modular convergence is
given in the following definition.

Definition 2.1. (Modular convergence) A sequence {uk}k is said to converge
modularly to u in LM(Ω) if there exists λ > 0 such that

ρM((uk − u)/λ) :=

ˆ

Ω

M (x, |uk − u|/λ) dx → 0 as k → ∞.

For a positive integer m, we define the Musielak–Orlicz–Sobolev spaces WmLM (Ω)
and WmEM (Ω) as follows

WmLM (Ω) = {u ∈ LM (Ω) : Dαu ∈ LM(Ω), |α| 6 m},

WmEM (Ω) = {u ∈ EM(Ω) : Dαu ∈ EM(Ω), |α| 6 m},

where α = (α1, α2, · · · , αN), |α| = |α1|+ |α2|+ · · ·+ |αN | and Dα = ∂|α|

∂
α1
x1

···∂
αN
xN

stands

for the distributional derivatives. Observe that by (1.8) the function x → M∗(x, c)
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always belongs to L1
loc
(Ω) for every constant number c > 0. Hence, for an arbitrary

compact subset K of Ω we can write by Hölder’s inequality in Musielak spaces
ˆ

K

|u(x)| dx 6 2‖u‖0,M,Ω‖χK‖0,M∗,Ω 6 2
(ˆ

K

M∗(x, 1) dx+ 1
)
‖u‖0,M,Ω

which yields LM(Ω) ⊂ L1
loc
(Ω). Therefore, endowed with the Luxemburg norm

‖u‖m,M,Ω = inf

{
λ > 0:

∑

|α|6m

ρM(Dαu/λ) 6 1

}
.

(
WmLM(Ω), ‖u‖m,M,Ω

)
is a Banach space. We will always identify the space WmLM(Ω)

to a subspace of the product Π|α|6mLM = ΠLM .

Definition 2.2. (Segment property) A domain Ω is said to satisfy the segment
property, if there exist a finite open covering {θ}ki=1 of Ω and a corresponding non-zero
vectors yi ∈ R

N such that (Ω ∩ θi) + tyi ⊂ Ω for all t ∈ (0, 1) and i = 1, . . . , k.

This condition holds, for example, if Ω is a bounded Lipschitz domain (cf. [1]).
By convention, the empty set satisfies the segment property.

3. Proof of main results

Proof of Theorem 1.1. Let d be the diameter of Ω. As (M2) is concerned
and without loss of generality, we can assume that i = 1. Being Ω bounded, using
a translation if necessary, we may assume that it is contained in the strip Ω ⊂
{(x1, x

′) ∈ [0, d] × R
N−1}. Let ∂1 := ∂

∂x1
stands for the partial derivative operator

with respect to x1 and let us first assume that u ∈ C∞
0 (Ω).

Part 1: We assume that there exists t0 ∈ R
+ such that the function x1 ∈ [0, d] 7→

M((x1, x
′), t) changes the variation on both sides of t0.

Case 1. Assume that x1 ∈ [0, d] 7→ M((x1, x
′), t) is non-decreasing for t 6 t0 and

non-increasing for t0 < t. Defining the two sets

E1 =
{
ξ ∈ [0, d] : |∂1u(ξ, x

′)| 6
1

d
t0

}
and E2 =

{
ξ ∈ [0, d] : |∂1u(ξ, x

′)| >
1

d
t0

}
,

we can write

u(x1, x
′) = u(x1, x

′)χE1(x1) + u(x1, x
′)χE2(x1)

= −

ˆ d

x1

∂1
(
u(ξ, x′)χE1(ξ)

)
dξ +

ˆ x1

0

∂1
(
u(ξ, x′)χE2(ξ)

)
dξ

= −

ˆ

[x1,d]∩E1

∂1u(ξ, x
′) dξ +

ˆ

[0,x1]∩E2

∂1u(ξ, x
′) dξ.

Thus,

|u(x1, x
′)| 6

ˆ

[x1,d]∩E1

∣∣∣∂1u(ξ, x′)
∣∣∣ dξ +

ˆ

[0,x1]∩E2

∣∣∣∂1u(ξ, x′)
∣∣∣ dξ.

Then, the convexity of the Φ-function M and Jensen’s inequality enable us to write

M (x, |u(x1, x
′)|) 6

1

2d

ˆ d

0

M
(
(x1, x

′), 2d |∂1u(ξ, x
′)|χ[x1,d]∩E1

(ξ)
)
dξ

+
1

2d

ˆ d

0

M
(
(x1, x

′), 2d |∂1u(ξ, x
′)|χ[0,x1]∩E2(ξ)

)
dξ
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6
1

2d

ˆ

[x1,d]∩E1

M ((ξ, x′), 2d |∂1u(ξ, x
′)|) dξ

+
1

2d

ˆ

[0,x1]∩E2

M ((ξ, x′), 2d |∂1u(ξ, x
′)|) dξ

6
1

2d

ˆ d

0

M ((ξ, x′), 2d |∂1u(ξ, x
′)|) dξ.

Integrating successively with respect to x′ and x1, we obtain

(3.1)

ˆ

Ω

M(x, |u(x)|) dx 6
1

2

ˆ

Ω

M(x, 2d|∂1u(x)|) dx.

Case 2. Assume that x1 ∈ [0, d] 7→ M((x1, x
′), t) is non-increasing on t 6 t0 and

non-decreasing on t0 < t. We can write

u(x1, x
′) = u(x1, x

′)χE1(x1) + u(x1, x
′)χE2(x1)

=

ˆ x1

0

∂1(u(ξ, x
′)χE1(ξ)) dξ −

ˆ d

x1

∂1(u(ξ, x
′)χE2(ξ)) dξ

=

ˆ

[0,x1]∩E1

∂1u(ξ, x
′) dξ −

ˆ

[x1,d]∩E2

∂1u(ξ, x
′) dξ,

which implies

|u(x1, x
′)| 6

ˆ

[0,x1]∩E1

|∂1u(ξ, x
′)| dξ +

ˆ

[x1,d]∩E2

|∂1u(ξ, x
′)| dξ.

Once again the convexity of the Φ-function M and Jensen’s inequality enable us to
write

M(x, |u(x1, x
′)|) 6

1

2d

ˆ d

0

M((x1, x
′), 2d|∂1u(ξ, x

′)|χ[0,x1]∩E1(ξ)) dξ

+
1

2d

ˆ d

0

M((x1, x
′), 2d|∂1u(ξ, x

′)|χ[x1,d]∩E2(ξ)) dξ

6
1

2d

ˆ

[0,x1]∩E1

M((ξ, x′), 2d|∂1u(ξ, x
′)|) dξ

+
1

2d

ˆ

[x1,d]∩E2

M((ξ, x′), 2d|∂1u(ξ, x
′)|) dξ

6
1

2d

ˆ d

0

M((ξ, x′), 2d|∂1u(ξ, x
′)|) dξ.

Integrating successively with respect to x′ and x1, we obtain
ˆ

Ω

M(x, |u(x)|) dx 6
1

2

ˆ

Ω

M(x, 2d|∂1u(x)|) dx.

Part 2: Assume now that for all t > 0, the function x1 ∈ [0, d] 7→ M((x1, x
′), t)

is monotone.
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Case 1. Assume first that x1 ∈ [0, d] 7→ M((x1, x
′), t) is non-increasing. By using

Jensen’s inequality we get

M(x, |u(x1, x
′)|) 6 M

(
(x1, x

′),

ˆ x1

0

|∂1u(ξ, x
′)| dξ

)

6 M

(
(x1, x

′),

ˆ d

0

|∂1u(ξ, x
′)|χ[0,x1](ξ) dξ

)

6
1

d

ˆ d

0

M((x1, x
′), d|∂1u(ξ, x

′)|χ[0,x1](ξ)) dξ

6
1

d

ˆ x1

0

M((ξ, x′), d|∂1u(ξ, x
′)|) dξ

6
1

d

ˆ d

0

M((ξ, x′), d|∂1u(ξ, x
′)|) dξ.

Integrating successively with respect to x′ and x1, we obtain
ˆ

Ω

M(x, |u(x)|) dx 6

ˆ

Ω

M(x, d|∂1u(x)|)dx.

Case 2. Assume that x1 ∈ [0, d] 7→ M((x1, x
′), t) is non-decreasing. By virtue of

Jensen’s inequality we can write

M(x, |u(x1, x
′)|) 6 M

(
(x1, x

′),

ˆ d

x1

|∂1u(ξ, x
′)| dξ

)

6 M

(
(x1, x

′),

ˆ d

0

|∂1u(ξ, x
′)|χ[x1,d](ξ) dξ

)

6
1

d

ˆ d

0

M((x1, x
′), d|∂1u(ξ, x

′)|χ[x1,d](ξ)) dξ

6
1

d

ˆ d

x1

M((ξ, x′), d|∂1u(ξ, x
′)|) dξ

6
1

d

ˆ d

0

M((ξ, x′), d|∂1u(ξ, x
′)|) dξ.

Integrating successively with respect to x′ and x1, we obtain

(3.2)

ˆ

Ω

M(x, |u(x)|) dx 6

ˆ

Ω

M(x, d|∂1u(x)|) dx.

To sum up, from (3.1)–(3.2), we obtain

(3.3)

ˆ

Ω

M(x, |u(x)|) dx 6

ˆ

Ω

M(x, 2d|∂1u(x)|) dx,

for all u ∈ C∞
0 (Ω).

Let now u ∈ W 1
0LM(Ω) be arbitrary. By [2, Theorem 3] there exist λ > 0 and a

sequence of functions uk ∈ C∞
0 (Ω) such that

ˆ

Ω

M

(
x,

|uk(x)− u(x)|

λ

)
dx+

ˆ

Ω

M

(
x,

|∇uk(x)−∇u(x)|

λ

)
dx → 0
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as k → +∞. Hence, up to a subsequence still again indexed by k, we can assume
that uk → u a.e. in Ω. Then, using (3.3) we can write

ˆ

Ω

M

(
x,

|u(x)|

4λd

)
dx 6 lim

k→+∞
inf

ˆ

Ω

M

(
x,

|uk(x)|

4λd

)
dx

6 lim
k→+∞

inf

ˆ

Ω

M

(
x,

1

2λ
|∂1uk(x)|

)
dx

6
1

2
lim

k→+∞
inf

ˆ

Ω

M

(
x,

1

λ
|∂1uk(x)− ∂1u(x)|

)
dx

+
1

2

ˆ

Ω

M

(
x,

1

λ
|∂1u(x)|

)
dx

6
1

2

ˆ

Ω

M

(
x,

1

λ
|∂1u(x)|

)
dx.

Thus, (1.9) is proved. Let us now prove the inequality (1.10). For u ∈ Wm
0 LM(Ω), it

can be checked easily from (1.9) that

∑

|α|<m

ˆ

Ω

M

(
x,

|Dαu(x)|

C(m,Ω)
∑

|β|=m‖D
βu‖M,Ω

)
dx 6 1,

where C(m,Ω) = cm,Ω

(
1 +

∑
|β|=m 1

)
depending only on m and Ω. The proof of

Theorem 1.1 is then achieved. �

Proof of Theorem 1.2. Let u ∈ Wm
0 EM(Ω). By the definition of Wm

0 EM (Ω),
there exists a sequence {uk}k of C∞

0 (Ω) functions such that Dαuk → Dαu for all
|α| 6 m with respect to the norm topology in LM (Ω). As the norm convergence
implies the modular one, one has Dαuk → Dαu for all |α| 6 m with respect to the
modular topology. Therefore, we get the result by following exactly the same lines
of the proof of Theorem 1.1. �

Proof of Theorem 1.3. The embedding Wm
0 EM (Ω) ⊂ Km

0 LM(Ω) is obviously
satisfied. It only remains to show that Km

0 LM(Ω) ⊂ Wm
0 EM(Ω) holds true. Let

u ∈ Km
0 LM (Ω) and let η > 0 be arbitrary. We will show that there is a sequence

v ∈ C∞
0 (Ω) such

(3.4)
∑

|α|6m

‖Dαu−Dαv‖M,Ω 6 η.

By the definition of Km
0 LM(Ω) there exist a sequence {uk} in WmLM(Ω) of compactly

supported functions in Ω and kα > 0 such that for all k > kα and |α| 6 m we have

‖Dαu−Dαuk‖M,Ω 6
η

2K
.

where K is the total number of multi-indices with |α| 6 m. Now by using [2,
Lemma 12] there exist a sequence {un

k} in C∞
0 (Ω) and nk,α

η > 0 such that for all

n > nk,α
η and |α| 6 m we have

‖Dαuk −Dαun
k‖M,Ω 6

η

2K
.

By the triangle inequality we get for all k > kα
0 and n > nk,α

η

‖Dαu−Dαun
k‖M,Ω 6 ‖Dαu−Dαuk)‖M,Ω + ‖Dαuk −Dαun

k‖M,Ω 6
η

K
,
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Hence follows (3.4) and then the following identification

Km
0 LM(Ω) = Wm

0 EM(Ω).

Therefore, Theorem 1.3 follows immediately from Theorem 1.2. �

Proof of Theorem 1.4. We begin first by showing that Wm
0 LM (Ω) ⊂ Wm,1

0 (Ω) ∩
WmLM(Ω). Since Wm

0 LM (Ω) is a subset of WmLM(Ω), it’s sufficient to check that
for all function u belonging to Wm

0 LM (Ω) we have u ∈ Wm,1
0 (Ω). Let u ∈ Wm

0 LM (Ω).
By [2, Theorem 3] there exist λ > 0 and a sequence uk ∈ C∞

0 (Ω) such that

∑

|α|6m

ˆ

Ω

M(x, |Dαuk(x)−Dαu(x)|/λ) dx → 0 as k → ∞.

Therefore, for all |α| 6 m
ˆ

Ω

M(x, |Dαuk(x)−Dαu(x)|/λ) dx → 0 as k → ∞.

Thus, for a subsequence still denoted by uk, we can assume

Dαuk → Dαu a.e. in Ω.

Applying Vitali’s theorem we obtain
ˆ

Ω

|Dαuk(x)−Dαu(x)| dx → 0 as k → ∞,

which implies that u ∈ Wm,1
0 (Ω).

Conversely, we should prove that Wm,1
0 (Ω) ∩WmLM(Ω) ⊂ Wm

0 LM (Ω). We will
show that for u ∈ Wm,1

0 (Ω)∩WmLM(Ω) there exist a sequence v ∈ C∞
0 (Ω) such that

v converges in the modular sense to u in WmLM(Ω) and then we conclude by using
[2, Theorem 3]. Let us denote by ũ the extension of u by zero outside Ω. Since u

belongs to Wm,1
0 (Ω) it yields, ũ ∈ Wm,1(RN) and D̃αu = Dαũ in the distributional

sense and a.e. in R
N (see [1, Lemma 3.27]) and so ũ ∈ WmLM (RN). Then by [2,

Lemma 3] we can assume that u has compact support K ⊂ Ω. We will distinguish
the two cases: either K ⊂ Ω or K ∩ ∂Ω 6= ∅. If K ⊂ Ω then we get the desired
inclusion by [2, Lemma 12]. If K ∩ ∂Ω 6= ∅, then, as in the proof of [2, Theorem 2],

there exist a finite collection {θ̂i}
k
i=1 covering the compact set K ∩ ∂Ω and an open

covering {θ′i}
k
i=0 of K with θ′i has a compact closure in θ̂i for i = 0, 1, · · · , k. Then u

can be splitted into finitely-many pieces ui, such that u =
∑k

i=1 ui with supp ui ⊂ θ′i,
i = 0, 1, · · · , k.

For i = 0, we consider supp u0 ⊂ θ′0 ⊂ Ω, then as for the first case by [2,
Lemma 12] there exist ε0 > 0 small enough (ε0 < dist(θ′0, ∂Ω)), such the regularized
function v0 = Jε0 ∗ u0 belongs to C∞

0 (Ω) and converge in modular since to u in

WmLM(Ω). For 1 6 i 6 k fixed. Let zi be a non-zero vector associated to θ̂i by the
segment property and let ri ∈ (0, 1) be such that

0 < ri < min{1/(|zi|+ 1), dist(θ′i, ∂θ̂i)|zi|
−1}.

Define

(ui)−ri(x) = ui(x− rizi).

and choose

εi < dist
(
(θ′i ∩ Ω) + rizi,R

N \ Ω
)
.
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We define then the sequences

vεi,rii (x) = Jεi ∗ (ui)−ri =

ˆ

B(0,1)

J(y)ui(x− rizi − εiy) dy

and

v(x) =
k∑

i=1

vεi,rii (x) + Jε0 ∗ u0(x),

therefore, v ∈ C∞
0 (Ω). Then, arguing similarly as in the proof of [2, Theorem 2], we

prove that v converges to u in WmLM(Ω) with respect to the modular convergence.
This implies that u belongs to Wm

0 LM (Ω).
To check (1.11) observe that {u ∈ W 1LM (Ω) : tr(u) = 0 on ∂Ω} ⊂ {u ∈ W 1,1(Ω) :

tr(u) = 0 on ∂Ω} = W 1,1
0 (Ω). So that for any v ∈ {u ∈ W 1LM(Ω) : tr(u) = 0 on ∂Ω}

one has v ∈ W 1,1
0 (Ω) ∩W 1LM(Ω) = W 1

0LM(Ω). �
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