Baernstein’s star-function, maximum modulus points and a problem of Erdős
Avainsanat:
Entire functions, meromorphic functions, subharmonic functions, defects, deviations, spreads, maximum modulus points, Nevanlinna theoryAbstrakti
The paper is devoted to the development of Baernstein's method of \(T^{*}\)-function. We consider the relationship between the number of separated maximum modulus points of a meromorphic function and the \(T^{*}\)-function. The results of Bergweiler, Bock, Edrei, Goldberg, Heins, Ostrovskii, Petrenko, Wiman are generalized. We also give examples showing that the obtained estimates are sharp.
Viittaaminen
Marchenko, I. I. (2021). Baernstein’s star-function, maximum modulus points and a problem of Erdős. Annales Fennici Mathematici, 47(1), 181–202. https://doi.org/10.54330/afm.112881
Copyright (c) 2021 Annales Fennici Mathematici
Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.