Baernstein’s star-function, maximum modulus points and a problem of Erdős

Författare

  • Ivan I. Marchenko University of Szczecin, Institute of Mathematics

Nyckelord:

Entire functions, meromorphic functions, subharmonic functions, defects, deviations, spreads, maximum modulus points, Nevanlinna theory

Abstract

 

The paper is devoted to the development of Baernstein's method of \(T^{*}\)-function. We consider the relationship between the number of separated maximum modulus points of a meromorphic function and the \(T^{*}\)-function. The results of Bergweiler, Bock, Edrei, Goldberg, Heins, Ostrovskii, Petrenko, Wiman are generalized. We also give examples showing that the obtained estimates are sharp.
Sektion
Articles

Publicerad

2021-12-17

Referera så här

Marchenko, I. I. (2021). Baernstein’s star-function, maximum modulus points and a problem of Erdős. Annales Fennici Mathematici, 47(1), 181–202. https://doi.org/10.54330/afm.112881