Bilipschitz mappings and quasihyperbolic mappings in real Banach spaces
Keywords:
Quasihyperbolic metric, (locally) bilipschitz mapping, (locally) QH mapping, fully QH mappingAbstract
Suppose that \(G\subsetneq E\) and \(G'\subsetneq E'\) are domains, where \(E\) and \(E'\) denote real Banach spaces with dimension at least 2, and \(f\colon G\to G'\) is a homeomorphism. The aim of this paper is to prove the validity of the implications: \(f\) is \(M\)-bilipschitz \(\Rightarrow f\) is locally \(M\)-bilipschitz \(\Rightarrow f\) is \(M\)-QH \(\Rightarrow f\) is locally \(M\)-QH, and the invalidity of their opposite implications, i.e., \(f\) is locally \(M\)-QH \(\nRightarrow f\) is \(M\)-QH \(\nRightarrow f\) is locally \(M\)-bilipschitz \(\nRightarrow f\) is \(M\)-bilipschitz. Among these results, the relationship that \(f\) is locally \(M\)-QH \(\nRightarrow f\) is \(M\)-QH gives a negative answer to one of the open problems raised by Väisälä in 1999.How to Cite
He, Y., Huang, M., & Wang, X. (2021). Bilipschitz mappings and quasihyperbolic mappings in real Banach spaces. Annales Fennici Mathematici, 46(2), 771–779. Retrieved from https://afm.journal.fi/article/view/110588
Copyright (c) 2021 The Finnish Mathematical Society
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.