Rectifiability of RCD(K,N) spaces via δ-splitting maps
Avainsanat:
Rectifiability, RCD space, tangent coneAbstrakti
In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via \(\delta\)-splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda.
Tiedostolataukset
Julkaistu
2021-06-21
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2021 The Finnish Mathematical Society

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
Bruè, E., Pasqualetto, E., & Semola, D. (2021). Rectifiability of RCD(K,N) spaces via δ-splitting maps. Annales Fennici Mathematici, 46(1), 465-482. https://afm.journal.fi/article/view/109611