Bilipschitz mappings and quasihyperbolic mappings in real Banach spaces
Avainsanat:
Quasihyperbolic metric, (locally) bilipschitz mapping, (locally) QH mapping, fully QH mappingAbstrakti
Suppose that \(G\subsetneq E\) and \(G'\subsetneq E'\) are domains, where \(E\) and \(E'\) denote real Banach spaces with dimension at least 2, and \(f\colon G\to G'\) is a homeomorphism. The aim of this paper is to prove the validity of the implications: \(f\) is \(M\)-bilipschitz \(\Rightarrow f\) is locally \(M\)-bilipschitz \(\Rightarrow f\) is \(M\)-QH \(\Rightarrow f\) is locally \(M\)-QH, and the invalidity of their opposite implications, i.e., \(f\) is locally \(M\)-QH \(\nRightarrow f\) is \(M\)-QH \(\nRightarrow f\) is locally \(M\)-bilipschitz \(\nRightarrow f\) is \(M\)-bilipschitz. Among these results, the relationship that \(f\) is locally \(M\)-QH \(\nRightarrow f\) is \(M\)-QH gives a negative answer to one of the open problems raised by Väisälä in 1999.Tiedostolataukset
Julkaistu
2021-08-03
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2021 The Finnish Mathematical Society

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
He, Y., Huang, M., & Wang, X. (2021). Bilipschitz mappings and quasihyperbolic mappings in real Banach spaces. Annales Fennici Mathematici, 46(2), 771-779. https://afm.journal.fi/article/view/110588