Some remarks on the Gehring–Hayman theorem
DOI:
https://doi.org/10.54330/afm.125920Avainsanat:
Gromov hyperbolic space, uniform domain, uniform space, uniformizationAbstrakti
In this paper we provide new characterizations of the Gehring–Hayman theorem from the point of view of Gromov boundary and uniformity. We also determine the critical exponents for the uniformized space to be a uniform space in the case of the hyperbolic spaces, the model spaces \(\mathbb{M}^{\kappa}_n\) of the sectional curvature \(\kappa<0\) with the dimension \(n \geq 2\) and hyperbolic fillings.Tiedostolataukset
Julkaistu
2023-01-10
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2022 Annales Fennici Mathematici

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
Rogovin, S., Shibahara, H., & Zhou, Q. (2023). Some remarks on the Gehring–Hayman theorem. Annales Fennici Mathematici, 48(1), 141-152. https://doi.org/10.54330/afm.125920