Conformal Assouad dimension as the critical exponent for combinatorial modulus
DOI:
https://doi.org/10.54330/afm.131478Avainsanat:
Conformal gauge, power quasisymmetry, Assouad dimensionAbstrakti
The conformal Assouad dimension is the infimum of all possible values of Assouad dimension after a quasisymmetric change of metric. We show that the conformal Assouad dimension equals a critical exponent associated to the combinatorial modulus for any compact doubling metric space. This generalizes a similar result obtained by Carrasco Piaggio for the Ahlfors regular conformal dimension to a larger family of spaces. We also show that the value of conformal Assouad dimension is unaffected if we replace quasisymmetry with power quasisymmetry in its definition.
Tiedostolataukset
Julkaistu
2023-07-02
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2023 Annales Fennici Mathematici

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
Murugan, M. (2023). Conformal Assouad dimension as the critical exponent for combinatorial modulus. Annales Fennici Mathematici, 48(2), 453-491. https://doi.org/10.54330/afm.131478