Non-convexity of extremal length
DOI:
https://doi.org/10.54330/afm.138339Avainsanat:
Teichmüller theory for Riemann surfaces, minimal surfaces in differential geometry, surfaces with prescribed mean curvature, harmonic functions on Riemann surfacesAbstrakti
With respect to every Riemannian metric, the Teichmüller metric, and the Thurston metric on Teichmüller space, we show that there exist measured foliations on surfaces whose extremal length functions are not convex. The construction uses harmonic maps to \(\mathbb{R}\)-trees and minimal surfaces in \(\mathbb{R}^n\).Tiedostolataukset
Julkaistu
2023-11-01
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2023 Annales Fennici Mathematici

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
Sagman, N. (2023). Non-convexity of extremal length. Annales Fennici Mathematici, 48(2), 691-702. https://doi.org/10.54330/afm.138339