CMC hypersurfaces with polynomial volume growth in warped products and the nonexistence of entire solutions to the minimal hypersurface equation
DOI:
https://doi.org/10.54330/afm.161311Avainsanat:
Warped products, constant mean curvature two-side hypersurfaces, polynomial volume growth, minimal hypersurfaces, entire graphsAbstrakti
We investigate constant mean curvature (CMC) complete two-sided hypersurfaces with polynomial volume growth in a class of warped products satisfying a suitable curvature constraint. In this setting, we establish the nonexistence of such a CMC hypersurface under mild hypotheses involving the mean curvature and the warping function. Applications to Einstein warped product, pseudo-hyperbolic, Schwarzschild and Reissner–Nordström spaces are also given. Furthermore, we present a nonparametric version of our main result which, in particular, guarantees the nonexistence of entire solutions with finite C2 norm of the the minimal hypersurface equation on a complete Riemannian manifold with polynomial volume growth.Tiedostolataukset
Julkaistu
2025-04-28
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2025 Annales Fennici Mathematici

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
de Lima, H. F. (2025). CMC hypersurfaces with polynomial volume growth in warped products and the nonexistence of entire solutions to the minimal hypersurface equation. Annales Fennici Mathematici, 50(1), 231–241. https://doi.org/10.54330/afm.161311