On bounded energy of convolution of fractal measures
DOI:
https://doi.org/10.54330/afm.163545Avainsanat:
Incidences, Riesz energy, Fourier decayAbstrakti
For all \(s\in[0,1]\) and \(t\in(0,s]\cup [2-s,2)\), we find the supremum of numbers \(\omega\in(0,2)\) such that\(\textup{I}_\omega(\mu\ast\sigma) \lesssim 1,\)
where \(\mu\) is any Borel measure on \(B(1)\) with \(\textup{I}_t(\mu)\leq 1\) and \(\sigma\) is any \((s,1)\)-Frostman measure on a \(C^2\)-graph with non-zero curvature. As an application, we use this to show the sharp \(L^6\)-decay of Fourier transform of \(\sigma\) when \(s\in [\frac{2}{3}, 1]\).
Tiedostolataukset
Julkaistu
2025-08-04
Numero
Osasto
Articles
Lisenssi
Copyright (c) 2025 Annales Fennici Mathematici

Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.
Viittaaminen
Yi, G. (2025). On bounded energy of convolution of fractal measures. Annales Fennici Mathematici, 50(2), 437–457. https://doi.org/10.54330/afm.163545