Liouville-type results in two dimensions for stationary points of functionals with linear growth
Avainsanat:
Variational problems, linear growth, entire solutions in 2D, Liouville and Bernstein-type resultsAbstrakti
We consider elliptic systems generated by variational integrals of linear growth satisfying the condition of \(\mu\)-ellipticity for some exponent \(\mu >1\) and prove that stationary points \(u\colon\mathbb{R}^2\to\mathbb{R}^N\) with the property \(\limsup_{|x|\to \infty} \frac{|u(x)|}{|x|} < \infty\) must be affine functions. The latter condition can be dropped in the scalar case together with appropriate assumptions on the energy density providing an extension of Bernstein's theorem.Viittaaminen
Bildhauer, M., & Fuchs, M. (2022). Liouville-type results in two dimensions for stationary points of functionals with linear growth. Annales Fennici Mathematici, 47(1), 417–426. https://doi.org/10.54330/afm.114681
Copyright (c) 2021 Annales Fennici Mathematici
Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.