Weighted norm inequalities for the maximal operator on L^p(·) over spaces of homogeneous type

Kirjoittajat

  • David Cruz-Uribe, OFS The University of Alabama, Department of Mathematics
  • Jeremy Cummings The University of Alabama, Department of Mathematics

Avainsanat:

Variable Lebesgue spaces, maximal operator, two weights, spaces of homogeneous type

Abstrakti

Given a space of homogeneous type (X,d,μ), we prove strong-type weighted norm inequalities for the Hardy-Littlewood maximal operator over the variable exponent Lebesgue spaces Lp(). We prove that the variable Muckenhoupt condition Ap() is necessary and sufficient for the strong type inequality if p() satisfies log-Hölder continuity conditions and 1<pp+<. Our results generalize to spaces of homogeneous type the analogous results in Euclidean space proved by Cruz-Uribe, Fiorenza and Neugebauer (2012).

 

Osasto
Articles

Julkaistu

2022-02-23

Viittaaminen

Cruz-Uribe, OFS, D., & Cummings, J. (2022). Weighted norm inequalities for the maximal operator on L^p(·) over spaces of homogeneous type. Annales Fennici Mathematici, 47(1), 457–488. https://doi.org/10.54330/afm.115059