Some remarks on the Gehring–Hayman theorem

Kirjoittajat

  • Sari Rogovin Maunula Secondary School and Helsinki School of Mathematics
  • Hyogo Shibahara University of Cincinnati, Department of Mathematical Sciences
  • Qingshan Zhou Foshan University, School of Mathematics and Big Data

Avainsanat:

Gromov hyperbolic space, uniform domain, uniform space, uniformization

Abstrakti

In this paper we provide new characterizations of the Gehring–Hayman theorem from the point of view of Gromov boundary and uniformity. We also determine the critical exponents for the uniformized space to be a uniform space in the case of the hyperbolic spaces, the model spaces \(\mathbb{M}^{\kappa}_n\) of the sectional curvature \(\kappa<0\) with the dimension \(n \geq 2\) and hyperbolic fillings.
Osasto
Articles

Julkaistu

2023-01-10

Viittaaminen

Rogovin, S., Shibahara, H., & Zhou, Q. (2023). Some remarks on the Gehring–Hayman theorem. Annales Fennici Mathematici, 48(1), 141–152. https://doi.org/10.54330/afm.125920