Strong barriers for weighted quasilinear equations
Avainsanat:
Potential theory, Hardy inequality, p-Laplacian, quasilinear elliptic equation, boundary value problem, boundary regularityAbstrakti
In potential theory, use of barriers is one of the most important techniques. We construct strong barriers for weighted quasilinear elliptic operators. There are two applications: (i) solvability of Poisson-type equations with boundary singular data, and (ii) a geometric version of Hardy inequality. Our construction method can be applied to a general class of divergence form elliptic operators on domains with rough boundary.Viittaaminen
Hara, T. (2024). Strong barriers for weighted quasilinear equations. Annales Fennici Mathematici, 49(2), 529–545. https://doi.org/10.54330/afm.147579
Copyright (c) 2024 Annales Fennici Mathematici
Tämä työ on lisensoitu Creative Commons Nimeä-EiKaupallinen 4.0 Kansainvälinen Julkinen -lisenssillä.