Boundary growth of Sobolev functions of monotone type for double phase functionals
DOI:
https://doi.org/10.54330/afm.112452Nyckelord:
Monotone Sobolev functions, spherical mean, double phase functionalAbstract
Our aim in this paper is to deal with boundary growth of spherical means of Sobolev functions of monotone type for the double phase functional \(\Phi_{p,q}(x,t) = t^{p} + (b(x) t)^{q}\) in the unit ball B of \(\mathbb{R}^n\), where \(1 < p < q < \infty\) and \(b(\cdot)\) is a non-negative bounded function on B which is Hölder continuous of order \(\theta \in (0,1]\).Nedladdningar
Publicerad
2021-11-29
Nummer
Sektion
Articles
Licens
Copyright (c) 2021 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Mizuta, Y., & Shimomura, T. (2021). Boundary growth of Sobolev functions of monotone type for double phase functionals. Annales Fennici Mathematici, 47(1), 23-37. https://doi.org/10.54330/afm.112452