Reverse integral Hardy inequality on metric measure spaces
DOI:
https://doi.org/10.54330/afm.112455Nyckelord:
Reverse integral Hardy inequality, reverse Minkowski inequality, metric measure space, homogeneous Lie group, hyperbolic space, Cartan-Hadamard manifoldsAbstract
In this note, we obtain a reverse version of the integral Hardy inequality on metric measure spaces. Moreover, we give necessary and sufficient conditions for the weighted reverse Hardy inequality to be true. The main tool in our proof is a continuous version of the reverse Minkowski inequality. In addition, we present some consequences of the obtained reverse Hardy inequality on the homogeneous groups, hyperbolic spaces and Cartan-Hadamard manifolds.
Nedladdningar
Publicerad
2021-11-29
Nummer
Sektion
Articles
Licens
Copyright (c) 2021 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Kassymov, A., Ruzhansky, M., & Suragan, D. (2021). Reverse integral Hardy inequality on metric measure spaces. Annales Fennici Mathematici, 47(1), 39-55. https://doi.org/10.54330/afm.112455