Restrictions of Sobolev W_p^1(R^2)-spaces to planar rectifiable curves
DOI:
https://doi.org/10.54330/afm.115393Nyckelord:
Traces, extensions, Sobolev spaces, Frostman measures, measures on curvesAbstract
We construct explicit examples of Frostman-type measures concentrated on arbitrary simple rectifiable curves \(\Gamma\subset\mathbb{R}^{2}\) of positive length. Based on such constructions we obtain for each \(p \in (1,\infty)\) an exact description of the trace space \(W^{1}_{p}(\mathbb{R}^{2})|_{\Gamma}\) of the first-order Sobolev space \(W^{1}_{p}(\mathbb{R}^{2})\) to an arbitrary simple rectifiable curve \(\Gamma\) of positive length.
Nedladdningar
Publicerad
2022-03-14
Nummer
Sektion
Articles
Licens
Copyright (c) 2021 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Tyulenev, A. I. (2022). Restrictions of Sobolev W_p^1(R^2)-spaces to planar rectifiable curves. Annales Fennici Mathematici, 47(1), 507-531. https://doi.org/10.54330/afm.115393