Parabolic rectifiability, tangent planes and tangent measures
DOI:
https://doi.org/10.54330/afm.119821Nyckelord:
Parabolic space, rectifiable set, C^1 graph, Lipschitz graph, tangent measure, Hausdorff measureAbstract
We define rectifiability in \(\mathbb{R}^{n}\times\mathbb{R}\) with a parabolic metric in terms of \(C^1\) graphs and Lipschitz graphs with small Lipschitz constants and we characterize it in terms of approximate tangent planes and tangent measures. We also discuss relations between the parabolic rectifiability and other notions of rectifiability.
Nedladdningar
Publicerad
2022-06-03
Nummer
Sektion
Articles
Licens
Copyright (c) 2022 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Mattila, P. (2022). Parabolic rectifiability, tangent planes and tangent measures. Annales Fennici Mathematici, 47(2), 855-884. https://doi.org/10.54330/afm.119821