Quasiconformality to quasisymmetry via weak (L,M)-quasisymmetry
DOI:
https://doi.org/10.54330/afm.121833Nyckelord:
Quasiconformal homeomorphism, quasisymmetric homeomorphism, Loewner space, LLCAbstract
This paper is devoted to the study of a fundamental problem in the theory of quasiconformal analysis: under what conditions local quasiconformality of a homeomorphism implies its global quasisymmetry. In particular, we introduce the concept of weak \((L,M)\)-quasisymmetry, serving as a bridge between local quasiconformality and global quasisymmetry. We show that in general metric spaces local regularity and some connectivity together with the Loewner condition are sufficient for a quasiconformal map to be weakly \((L,M)\)-quasisymmetric, and subsequently, quasisymmetric with respect to the internal metrics.
Nedladdningar
Publicerad
2022-09-18
Nummer
Sektion
Articles
Licens
Copyright (c) 2022 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Cheng, T., & Yang, S. (2022). Quasiconformality to quasisymmetry via weak (L,M)-quasisymmetry. Annales Fennici Mathematici, 47(2), 1131-1157. https://doi.org/10.54330/afm.121833