Function theory off the complexified unit circle: Fréchet space structure and automorphisms
DOI:
https://doi.org/10.54330/afm.144880Nyckelord:
Schauder basis, invariant Laplacian, conformal invarianceAbstract
Motivated by recent work on strict deformation quantization of the unit disk and the Riemann sphere, we study the Fréchet space structure of the set of holomorphic functions on the complement \(\Omega:=\{(z,w)\in \hat{\mathbb{C}}^2\colon z\cdot w\not=1\}\) of the complexified unit circle \(\{(z,w) \in \hat{\mathbb{C}}^2 \colon z\cdot w=1\}\). We also characterize the subgroup of all biholomorphic automorphisms of \(\Omega\) which leave the canonical Laplacian on \(\Omega\) invariant.Nedladdningar
Publicerad
2024-04-10
Nummer
Sektion
Articles
Licens
Copyright (c) 2024 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Heins, M., Moucha, A., & Roth, O. (2024). Function theory off the complexified unit circle: Fréchet space structure and automorphisms. Annales Fennici Mathematici, 49(1), 257–280. https://doi.org/10.54330/afm.144880