Liouville type theorems for subelliptic systems on the Heisenberg group with general nonlinearity
DOI:
https://doi.org/10.54330/afm.148660Nyckelord:
Liouville-type theorem, Lane–Emden system, method of moving plane, Heisenberg group, semilinear subelliptic systems, integral inequalitiesAbstract
In this paper, we establish Liouville type results for semilinear subelliptic systems associated with the sub-Laplacian on the Heisenberg group \(\mathbb{H}^{n}\) involving two different kinds of general nonlinearities. The main technique of the proof is the method of moving planes combined with some integral inequalities replacing the role of maximum principles. As a special case, we obtain the Liouville theorem for the Lane–Emden system on the Heisenberg group \(\mathbb{H}^{n}\), which also appears to be a new result in the literature.Nedladdningar
Publicerad
2024-10-15
Nummer
Sektion
Articles
Licens
Copyright (c) 2024 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Kumar, V., Ruzhansky, M., & Zhang, R. (2024). Liouville type theorems for subelliptic systems on the Heisenberg group with general nonlinearity. Annales Fennici Mathematici, 49(2), 561–582. https://doi.org/10.54330/afm.148660