Finite dimensionality of Besov spaces and potential-theoretic decomposition of metric spaces
DOI:
https://doi.org/10.54330/afm.163110Nyckelord:
Besov spaces, Korevaar–Schoen spaces, fractal, irreducible p-energy form, Newton–Sobolev spaces, p-Poincaré inequality, Sierpiński fractals, decompositionAbstract
In the context of a metric measure space \((X,d,\mu)\), we explore the potential-theoretic implications of having a finite-dimensional Besov space. We prove that if the dimension of the Besov space \(B^\theta_{p,p}(X)\) is \(k>1\), then \(X\) can be decomposed into \(k\) number of irreducible components (Theorem 1.1). Note that \(\theta\) may be bigger than \(1\), as our framework includes fractals. We also provide sufficient conditions under which the dimension of the Besov space is 1. We introduce critical exponents \(\theta_p(X)\) and \(\theta_p^{\ast}(X)\) for the Besov spaces. As examples illustrating Theorem 1.1, we compute these critical exponents for spaces \(X\) formed by glueing copies of \(n\)-dimensional cubes, the Sierpiński gaskets, and of the Sierpiński carpet.Nedladdningar
Publicerad
2025-06-27
Nummer
Sektion
Articles
Licens
Copyright (c) 2025 Annales Fennici Mathematici

Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.
Referera så här
Kumagai, T., Shanmugalingam, N., & Shimizu, R. (2025). Finite dimensionality of Besov spaces and potential-theoretic decomposition of metric spaces. Annales Fennici Mathematici, 50(1), 347–369. https://doi.org/10.54330/afm.163110