Rectifiability of RCD(K,N) spaces via δ-splitting maps
Nyckelord:
Rectifiability, RCD space, tangent coneAbstract
In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via \(\delta\)-splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda.
Referera så här
Bruè, E., Pasqualetto, E., & Semola, D. (2021). Rectifiability of RCD(K,N) spaces via δ-splitting maps. Annales Fennici Mathematici, 46(1), 465–482. Hämtad från https://afm.journal.fi/article/view/109611
Copyright (c) 2021 The Finnish Mathematical Society
Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.