Three-term arithmetic progressions in subsets of F_q^∞ of large Fourier dimension

Författare

  • Robert Fraser University of Edinburgh, School of Mathematics

Nyckelord:

Fourier dimension, three-term arithmetic progressions, Fourier analysis, additive combinatorics

Abstract

We show that subsets of \(\mathbf{F}_q^{\infty}\) of large Fourier dimension must contain three-term arithmetic progressions. This contrasts with a construction of Shmerkin of a subset of \(\mathbf{R}\) of Fourier dimension 1 with no three-term arithmetic progressions.
Sektion
Articles

Publicerad

2021-08-20

Referera så här

Fraser, R. (2021). Three-term arithmetic progressions in subsets of F_q^∞ of large Fourier dimension. Annales Fennici Mathematici, 46(2), 1007–1030. Hämtad från https://afm.journal.fi/article/view/110939