Parabolic rectifiability, tangent planes and tangent measures
Nyckelord:
Parabolic space, rectifiable set, C^1 graph, Lipschitz graph, tangent measure, Hausdorff measureAbstract
We define rectifiability in \(\mathbb{R}^{n}\times\mathbb{R}\) with a parabolic metric in terms of \(C^1\) graphs and Lipschitz graphs with small Lipschitz constants and we characterize it in terms of approximate tangent planes and tangent measures. We also discuss relations between the parabolic rectifiability and other notions of rectifiability.
Referera så här
Mattila, P. (2022). Parabolic rectifiability, tangent planes and tangent measures. Annales Fennici Mathematici, 47(2), 855–884. https://doi.org/10.54330/afm.119821
Copyright (c) 2022 Annales Fennici Mathematici
Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.