Limiting Sobolev and Hardy inequalities on stratified homogeneous groups

Författare

  • Jean Van Schaftingen Université catholique de Louvain, Institut de Recherche en Mathématique et Physique (IRMP)
  • Po-Lam Yung The Chinese University of Hong Kong, Department of Mathematics, and Australian National University, Mathematical Sciences Institute

Nyckelord:

Sobolev embedding, overdetermined elliptic operator, compatibility conditions, homogeneous differential operator, maximally hypoelliptic operator, canceling operator, cocanceling operator, exterior derivative, symmetric derivative, Korn-Sobolev inequality, Hodge inequality, Saint-Venant compatibility conditions

Abstract

We give a sufficient condition for limiting Sobolev and Hardy inequalities to hold on stratified homogeneous groups. In the Euclidean case, this condition reduces to the known cancelling necessary and sufficient condition. We obtain in particular endpoint Korn-Sobolev and Korn-Hardy inequalities on stratified homogeneous groups.

 

Sektion
Articles

Publicerad

2022-08-16

Referera så här

Van Schaftingen, J., & Yung, P.-L. (2022). Limiting Sobolev and Hardy inequalities on stratified homogeneous groups. Annales Fennici Mathematici, 47(2), 1065–1098. https://doi.org/10.54330/afm.120959