Dimension estimates on circular (s,t)-Furstenberg sets
Nyckelord:
Furstenberg set, circular Furstenberg set, Hausdorff dimensionAbstract
In this paper, we show that circular \((s,t)\)-Furstenberg sets in \(\mathbb R^2\) have Hausdorff dimension at least \(\max\{\tfrac{t}3+s,(2t+1)s-t\}\) for all \(0<s,t\le 1\). This result extends the previous dimension estimates on circular Kakeya sets by Wolff.Referera så här
Liu, J. (2023). Dimension estimates on circular (s,t)-Furstenberg sets. Annales Fennici Mathematici, 48(1), 299–324. https://doi.org/10.54330/afm.128073
Copyright (c) 2022 Annales Fennici Mathematici
Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.