Quasiconformal solutions to elliptic partial differential equations
Nyckelord:
Quasiconformal mappings, elliptic PDE, Lipschitz continuityAbstract
In this paper, we assume that \(G\) and \(\Omega\) are two Jordan domains in \(\mathbb{R}^n\) with \(\mathcal{C}^2\) boundaries, where \(n\ge 2\), and prove that every quasiconformal mapping \(f\in\mathcal{W}^{2,1+\epsilon}_{\mathrm{loc}}\) of \(G\) onto \(\Omega\), satisfying the elliptic partial differential inequality \(|L_ A[f]|\lesssim (\|Df\|^2+|g|)\), with \(g\in\mathcal{L}^p(G)\), where \(p>n\), is Lipschitz continuous. The result is sharp since for \(p=n\), the mapping \(f\) is not necessarily Lipschitz continuous. This extends several results for harmonic quasiconformal mappings.
Referera så här
Kalaj, D. (2023). Quasiconformal solutions to elliptic partial differential equations. Annales Fennici Mathematici, 48(1), 361–374. https://doi.org/10.54330/afm.129643
Copyright (c) 2023 Annales Fennici Mathematici
Detta verk är licensierat under en Creative Commons Erkännande-IckeKommersiell 4.0 Internationell-licens.