Non-convexity of extremal length

Författare

  • Nathaniel Sagman University of Luxembourg

Nyckelord:

Teichmüller theory for Riemann surfaces, minimal surfaces in differential geometry, surfaces with prescribed mean curvature, harmonic functions on Riemann surfaces

Abstract

With respect to every Riemannian metric, the Teichmüller metric, and the Thurston metric on Teichmüller space, we show that there exist measured foliations on surfaces whose extremal length functions are not convex. The construction uses harmonic maps to \(\mathbb{R}\)-trees and minimal surfaces in \(\mathbb{R}^n\).
Sektion
Articles

Publicerad

2023-11-01

Referera så här

Sagman, N. (2023). Non-convexity of extremal length. Annales Fennici Mathematici, 48(2), 691–702. https://doi.org/10.54330/afm.138339