Function theory off the complexified unit circle: Fréchet space structure and automorphisms

Författare

  • Michael Heins University of Würzburg, Department of Mathematics
  • Annika Moucha University of Würzburg, Department of Mathematics
  • Oliver Roth University of Würzburg, Department of Mathematics

Nyckelord:

Schauder basis, invariant Laplacian, conformal invariance

Abstract

Motivated by recent work on strict deformation quantization of the unit disk and the Riemann sphere, we study the Fréchet space structure of the set of holomorphic functions on the complement \(\Omega:=\{(z,w)\in \hat{\mathbb{C}}^2\colon z\cdot w\not=1\}\) of the complexified unit circle \(\{(z,w) \in \hat{\mathbb{C}}^2 \colon z\cdot w=1\}\). We also characterize the subgroup of all biholomorphic automorphisms of \(\Omega\) which leave the canonical Laplacian on \(\Omega\) invariant.
Sektion
Articles

Publicerad

2024-04-10

Referera så här

Heins, M., Moucha, A., & Roth, O. (2024). Function theory off the complexified unit circle: Fréchet space structure and automorphisms. Annales Fennici Mathematici, 49(1), 257–280. https://doi.org/10.54330/afm.144880